Genomic Selection for Improved Fertility of Dairy Cows with Emphasis on Cyclicity and Pregnancy
Transition management: Grouping Strategies and Reproduction

Ricardo C. Chebel1, Paula R. B. Silva2, Karen M. Lobeck2, Márcia I. Endres2

1Department of Veterinary Population Medicine
2Department of Animal Science
Strategies to Improve Transition Cow Health

- Management
 - Duration of the close-up period
 - Reproductive management
 - Comfort
 - Minimize heat stress
 - House heifers and cows separately
 - Stocking density
 - Regrouping

- Nutritional
 - Intake: dry matter and water
 - Anionic salts
 - ↓ Hypocalcemia
 - Monensin and choline
 - ↓ Ketosis
 - Fatty acids (omega 6)
 - ↑ Pro-inflammatory

- Hormonal
 - rbST
 - ↑ Immunity & ↓ ketosis

- Immunity & ketosis
Strategies to Improve Transition Cow Health

- **Management**
 - Duration of the close-up period
 - Reproductive management
 - Comfort
 - Minimize heat stress
 - House heifers and cows separately
 - Stocking density
 - Regrouping

- **Nutritional**
 - Intake: dry matter and water
 - Anionic salts
 - \(\downarrow\) Hypocalcemia
 - Monensin and choline
 - \(\downarrow\) Ketosis
 - Fatty acids (omega 6)
 - \(\uparrow\) Pro-inflammatory

- **Hormonal**
 - rbST
 - \(\uparrow\) Immunity & \(\downarrow\) ketosis
“Stress is part of life and it is not inherently bad ... All life forms have evolved mechanisms to cope with the stresses of their lives”

Moberg and Mench, 2000
“Stress is part of life and it is not inherently bad ... All life forms have evolved mechanisms to cope with the stresses of their lives”

“We have come to accept that animals also suffer from the burden of stress, and that when suffering from stress they develop very similar pathologies (to humans) ... while experiencing severe stress, animals can succumb to disease or fail to reproduce or develop properly ...”

Moberg and Mench, 2000
“Stress is part of life and it is not inherently bad ... All life forms have evolved mechanisms to cope with the stresses of their lives”

“We have come to accept that animals also suffer from the burden of stress, and that when suffering from stress they develop very similar pathologies (to humans) ... while experiencing severe stress, animals can succumb to disease or fail to reproduce or develop properly ...”

“It is the recognition of these harmful effects of stress that has sensitized us to the importance of stress to an animal’s welfare or wellbeing”
The Biology of Animal Stress: Basic Principles and Implications for Animal Welfare

• “Stress is part of life and it is not inherently bad … All life forms have evolved mechanisms to cope with the stresses of their lives”

• “We have come to accept that animals also suffer from the burden of stress, and that when suffering from stress they develop very similar pathologies (to humans) … while experiencing severe stress, animals can succumb to disease or fail to reproduce or develop properly …”

• “It is the recognition of these harmful effects of stress that has sensitized us to the importance of stress to an animal’s welfare or wellbeing”

• “Our challenge is to differentiate between little non-threatening stresses of life and those stress that adversely affect an animal's welfare”

Moberg and Mench, 2000
Animal Well-being:
Animal Well-being:

Public Perception Profitability
Animal Well-being:

Public Perception

Science Based Guidelines

Profitability
Model of the Biological Response of Animals to Stress

Adapted from Moberg and Mench, 2000
Model of the Biological Response of Animals to Stress

Recognition of a Threat to Homeostasis

Adapted from Moberg and Mench, 2000
Model of the Biological Response of Animals to Stress

Recognition of a Threat to Homeostasis

- STIMULUS
- Central Nervous System
 - Perception of stressor
 - Organization of biological defense

Adapted from Moberg and Mench, 2000
Model of the Biological Response of Animals to Stress

Recognition of a Threat to Homeostasis

Stress Responses

Central Nervous System
- Perception of stressor
- Organization of biological defense

STIMULUS

Adapted from Moberg and Mench, 2000
Model of the Biological Response of Animals to Stress

Recognition of a Threat to Homeostasis

- STIMULUS
 - Central Nervous System
 - Perception of stressor
 - Organization of biological defense
 - Biological response (behavioral, autonomic, neuroendocrine, immunological)

Adapted from Moberg and Mench, 2000
Model of the Biological Response of Animals to Stress

Recognition of a Threat to Homeostasis

STIMULUS

Central Nervous System

Perception of stressor

Organization of biological defense

Biological response
(behavioral, autonomic, neuroendocrine, immunological)

Normal biological function

Altered biological function

Adapted from Moberg and Mench, 2000
Recognition of a Threat to Homeostasis

Central Nervous System
- Perception of stressor
- Organization of biological defense

Biological response (behavioral, autonomic, neuroendocrine, immunological)

Normal biological function

Altered biological function

Consequences of Stress

Adapted from Moberg and Mench, 2000
Model of the Biological Response of Animals to Stress

Recognition of a Threat to Homeostasis

Stress Responses

Consequences of Stress

STIMULUS

Central Nervous System

Perception of stressor

Organization of biological defense

Biological response (behavioral, autonomic, neuroendocrine, immunological)

Normal biological function

Altered biological function

Adapted from Moberg and Mench, 2000
Model of the Biological Response of Animals to Stress

1. Recognition of a Threat to Homeostasis
 - STIMULUS
 - Central Nervous System
 - Perception of stressor
 - Organization of biological defense
 - Biological response (behavioral, autonomic, neuroendocrine, immunological)
 - Normal biological function
 - Altered biological function
 - Prepathological state
 - Development of pathology

Adapted from Moberg and Mench, 2000
Measurements of Stress Response: Trends in stress biology

Moberg and Mench, 2000
Measurements of Stress Response: Trends in stress biology

• Neuroendocrine
 – Primarily = hypothalamic-pituitary-adrenal (HPA) axis
 • Glucocorticosteroids, prolactin, somatotropin, TSH, LH, FSH
 – Largest impact on other functions and responses
Measurements of Stress Response: Trends in stress biology

- **Neuroendocrine**
 - Primarily = hypothalamic-pituitary-adrenal (HPA) axis
 - Glucocorticosteroids, prolactin, somatotropin, TSH, LH, FSH
 - Largest impact on other functions and responses

- **Autonomic nervous system (“Fight or Flight Response”)**
 - Cardiovascular and gastrointestinal systems, exocrine glands and adrenal medulla
 - Usually of short duration

Moberg and Mench, 2000
Measurements of Stress Response: Trends in stress biology

• Neuroendocrine
 – Primarily = hypothalamic-pituitary-adrenal (HPA) axis
 • Glucocorticosteroids, prolactin, somatotropin, TSH, LH, FSH
 – Largest impact on other functions and responses

• Autonomic nervous system ("Fight or Flight Response")
 – Cardiovascular and gastrointestinal systems, exocrine glands and adrenal medulla
 – Usually of short duration

• Immune function
 – Innate and humoral immune responses
 – Directly and indirectly (HPA axis) affected by stressors

Moberg and Mench, 2000
Measurements of Stress Response: Trends in stress biology

- **Neuroendocrine**
 - Primarily = hypothalamic-pituitary-adrenal (HPA) axis
 - Glucocorticosteroids, prolactin, somatotropin, TSH, LH, FSH
 - Largest impact on other functions and responses

- **Autonomic nervous system (“Fight or Flight Response”)**
 - Cardiovascular and gastrointestinal systems, exocrine glands and adrenal medulla
 - Usually of short duration

- **Immune function**
 - Innate and humoral immune responses
 - Directly and indirectly (HPA axis) affected by stressors

- **Behavior**
 - Removal from the stressful situation (heat stress = shade and water; subordinate cow avoids feeding at the same time as a dominant cow)

Moberg and Mench, 2000
What is the Ideal Stocking Density in the Prepartum Period?
Effect of Overstocking on Feeding Behavior
Effect of Overstocking on Feeding Behavior

- Close-up cows housed in pens with 1 cow/bin or 2 cows/bin (Hosseinkhani et al., 2008)
Effect of Overstocking on Feeding Behavior

• Close-up cows housed in pens with 1 cow/bin or 2 cows/bin (Hosseinkhani et al., 2008)
 – ↑Rate of intake and ↓meals/day = ↑risk for ruminal acidosis
Effect of Overstocking on Feeding Behavior

- Close-up cows housed in pens with 1 cow/bin or 2 cows/bin (Hosseinkhani et al., 2008)
 - ↑Rate of intake and ↓meals/day = ↑risk for ruminal acidosis
 - ↑Sorting immediately after feeding
Effect of Overstocking on Feeding Behavior

- Close-up cows housed in pens with 1 cow/bin or 2 cows/bin (Hosseinkhani et al., 2008)
 - ↑Rate of intake and ↓meals/day = ↑risk for ruminal acidosis
 - ↑Sorting immediately after feeding

- 30 vs. 60 cm/cow of feed-bunk space pre- and post-partum (Proudfoot et al., 2009)
Effect of Overstocking on Feeding Behavior

- **Close-up cows housed in pens with 1 cow/bin or 2 cows/bin**

 (Hosseinkhani et al., 2008)

 - ↑Rate of intake and ↓meals/day = ↑risk for ruminal acidosis

 - ↑Sorting immediately after feeding

- **30 vs. 60 cm/cow of feed-bunk space pre- and post- partum**

 (Proudfoot et al., 2009)

 - 1 wk before calving = ↓visit feed time, ↓visit intake, ↓DMI, ↑standing time, ↑displacement rate
Effect of Overstocking on Feeding Behavior

• Close-up cows housed in pens with 1 cow/bin or 2 cows/bin (Hosseinkhani et al., 2008)
 – ↑Rate of intake and ↓meals/day = ↑risk for ruminal acidosis
 – ↑Sorting immediately after feeding

• 30 vs. 60 cm/cow of feed-bunk space pre- and post-partum (Proudfoot et al., 2009)
 – 1 wk before calving = ↓visit feed time, ↓visit intake, ↓DMI, ↑standing time, ↑displacement rate
 – 1 wk after calving = ↓visit feed time, ↓daily feed time
Effect of Overstocking on Feeding Behavior

- Close-up cows housed in pens with 1 cow/bin or 2 cows/bin (Hosseinkhani et al., 2008)
 - ↑Rate of intake and ↓meals/day = ↑risk for ruminal acidosis
 - ↑Sorting immediately after feeding

- 30 vs. 60 cm/cow of feed-bunk space pre- and post- partum (Proudfoot et al., 2009)
 - 1 wk before calving = ↓visit feed time, ↓visit intake, ↓DMI, ↑standing time, ↑displacement rate
 - 1 wk after calving = ↓visit feed time, ↓daily feed time
 - 2 wk after calving = ↓visit feed time, ↑rate of intake
Effect of Feed Bunk Space on Feeding Behavior of Dairy Cows

- Fresh Feed
- Push Up
- Milking

% of cows feeding vs. Time (h)

- 80 cm/cow
- 60 cm/cow
- 40 cm/cow
- 20 cm/cow

Huzzey et al. (2006)
courtesy: T. DeVries
Effect of Feed Bunk Space on Feeding Behavior of Dairy Cows

Huzzey et al. (2006)
Effect of Feed Bunk Space on Feeding Behavior of Dairy Cows

- Fresh Feed
- Push Up
- Milking

% of cows feeding

Time (h)

0:00 3:00 6:00 9:00 12:00 15:00 18:00 21:00

80 cm/cow
60 cm/cow
40 cm/cow
20 cm/cow

Huzzey et al. (2006) courtesy: T. DeVries
Effect of Feed Bunk Space on Feeding Behavior of Dairy Cows

- Fresh Feed
- Push Up
- Milking

% of cows feeding

Time (h)

0:00 3:00 6:00 9:00 12:00 15:00 18:00 21:00

80 cm/cow
60 cm/cow
40 cm/cow
20 cm/cow

courtesy: T. DeVries

Huzzey et al. (2006)
Effect of Competition on Feeding Behavior

- No competition (1 cow/bin)
- Competition (2 cows/bin)

Hour

Eating rate (kg/min)

courtesy: T. DeVries

Hosseinkhani et al. (2008)
Overstocking and Commingling Heifers and Cows
Overstocking and Commingling Heifers and Cows

• Overstocking
Overstocking and Commingling Heifers and Cows

• Overstocking
 – ↓ DMI = ↓ Immune function and ↓ milk yield
Overstocking and Commingling Heifers and Cows

- Overstocking
 - \(\downarrow DMI = \downarrow \text{Immune function and } \downarrow \text{milk yield} \)
 - \(\uparrow \text{Standing time} = \uparrow \text{Risk of lameness} \)
Overstocking and Commingling Heifers and Cows

- Overstocking
 - \downarrow DMI = \downarrow Immune function and \downarrow milk yield
 - \uparrow Standing time = \uparrow Risk of lameness
 - Submissive cows = malnutrition
Overstocking and Commingling Heifers and Cows

• Overstocking
 – ↓ DMI = ↓ Immune function and ↓ milk yield
 – ↑ Standing time = ↑ Risk of lameness
 – Submissive cows = malnutrition
 • ↓ cows at the feed bunk with no compensatory visits to the feed bunk, ↑ sorting
Overstocking and Commingling Heifers and Cows

• Overstocking
 – \downarrow DMI = \downarrow **Immune function** and \downarrow **milk yield**
 – \uparrow Standing time = \uparrow **Risk of lameness**
 – Submissive cows = **malnutrition**
 • \downarrow cows at the feed bunk with no compensatory visits to the feed bunk, \uparrow sorting
 – Dominant cows = **acidosis**
Overstocking and Commingling Heifers and Cows

- **Overstocking**
 - ↓ DMI = ↓ Immune function and ↓ milk yield
 - ↑ Standing time = ↑ Risk of lameness
 - Submissive cows = malnutrition
 - ↓ cows at the feed bunk with no compensatory visits to the feed bunk, ↑ sorting
 - Dominant cows = acidosis
 - ↑ rate of feed intake, ↓ meals per day, ↑ sorting
Overstocking and Commingling Heifers and Cows

- Overstocking
 - \downarrow DMI = \downarrow Immune function and \downarrow milk yield
 - \uparrow Standing time = \uparrow Risk of lameness
 - Submissive cows = malnutrition
 - \downarrow cows at the feed bunk with no compensatory visits to the feed bunk, \uparrow sorting
 - Dominant cows = acidosis
 - \uparrow rate of feed intake, \downarrow meals per day, \uparrow sorting
 - Affect metabolism of first lactation cows by increasing cortisol secretion and predisposing them to more lipolysis and insulin resistance/desensitization (Huzzey et al., 2012)
Association Between Prepartum Stocking Density and Production

Oetzel et al, 2007
Association Between Prepartum Stocking Density and Production

• Field trial to evaluate dry cow feed additive
 – Nulliparous animals grouped with parous animals pre- and post-partum

Oetzel et al, 2007
Association Between Prepartum Stocking Density and Production

- Field trial to evaluate dry cow feed additive
 - Nulliparous animals grouped with parous animals pre- and post-partum
 - Pre-fresh stall stocking density ranged from 62 to 138% of stalls

Oetzel et al, 2007
Association Between Prepartum Stocking Density and Production

- Field trial to evaluate dry cow feed additive
 - Nulliparous animals grouped with parous animals pre- and post-partum
 - Pre-fresh stall stocking density ranged from 62 to 138% of stalls
 - No stall overstocking in post-fresh pens

Oetzel et al, 2007
Association Between Prepartum Stocking Density and Production

- Field trial to evaluate dry cow feed additive
 - Nulliparous animals grouped with parous animals pre- and post-partum
 - Pre-fresh stall stocking density ranged from 62 to 138% of stalls
 - No stall overstocking in post-fresh pens
- Retrospective evaluation of the association of prepartum stocking density and milk production

Oetzel et al, 2007
Association Between Prepartum Stocking Density and Production

- Field trial to evaluate dry cow feed additive
 - Nulliparous animals grouped with parous animals pre- and post-partum
 - Pre-fresh stall stocking density ranged from 62 to 138% of stalls
 - No stall overstocking in post-fresh pens

- Retrospective evaluation of the association of prepartum stocking density and milk production
 - Nulliparous animals produced 0.73 kg/d less milk for every 10% unit increase in stocking density above 80%

Oetzel et al, 2007
Association Between Prepartum Stocking Density and Production

- Field trial to evaluate dry cow feed additive
 - Nulliparous animals grouped with parous animals pre- and post-partum
 - Pre-fresh stall stocking density ranged from 62 to 138% of stalls
 - No stall overstocking in post-fresh pens

- Retrospective evaluation of the association of prepartum stocking density and milk production
 - Nulliparous animals produced 0.73 kg/d less milk for every 10% unit increase in stocking density above 80%

- Retrospective data not controlled for changes in ration, season, management, etc.

Oetzel et al, 2007
Hypothesis was that reducing prepartum stocking density (100 vs 80% of headlocks) would improve performance of lactating cows

Nulliparous (n = 324) and parous (n = 404) animals assigned to one of two treatments at 28 d before expected calving date

- 80SD = 38 animals, 48 headlocks, and 44 stalls
- 100SD = 48 animals, 48 headlocks, and 44 stalls

- Nulliparous and parous animals separate throughout the study

After calving, animals from different treatments were commingled in the same pens
Prepartum Pen Design

SD80: 38 cows, 80% headlocks, 86% stalls
SD100: 48 cows, 100% headlocks, 109% stalls
Effect of Stocking Density on Immune, Health, Reproductive and Productive Parameters

-28 -14 0 14 35 56
Effect of Stocking Density on Immune, Health, Reproductive and Productive Parameters
Effect of Stocking Density on Immune, Health, Reproductive and Productive Parameters

BCS
LS

Behavior
Calving

-28 -14 0 14 35 56
Effect of Stocking Density on Immune, Health, Reproductive and Productive Parameters

Weekly blood samples
(innate immunity, hemogram, metabolites)

Behavior

Calving

BCS
LS

-28
-14
0
14
35
56
Effect of Stocking Density on Immune, Health, Reproductive and Productive Parameters

Weekly blood samples
(innate immunity, hemogram, metabolites)

BCS
LS

Behavior

Calving

-28
-14
0
14
35
56

BCS
LS
Effect of Stocking Density on Immune, Health, Reproductive and Productive Parameters

Weekly blood samples
(innate immunity, hemogram, metabolites)

BCS
LS

Behavior

Calving

Exams for RFM and metritis
(d 1, 3, 7, 10, and 14 postpartum)
Effect of Stocking Density on Immune, Health, Reproductive and Productive Parameters

Weekly blood samples (innate immunity, hemogram, metabolites)

Exams for RFM and metritis (d 1, 3, 7, 10, and 14 postpartum)
Effect of Stocking Density on Immune, Health, Reproductive and Productive Parameters

Weekly blood samples
(innate immunity, hemogram, metabolites)

Exams for RFM and metritis
(d 1, 3, 7, 10, and 14 postpartum)
Effect of Stocking Density on Immune, Health, Reproductive and Productive Parameters

- Cows were observed daily from 0 to 60 d postpartum for mastitis and DA
Effect of Stocking Density on Immune, Health, Reproductive and Productive Parameters

Weekly blood samples (innate immunity, hemogram, metabolites)

BCS LS

-28 -14 0 14

Behavior

Calving

Exams for RFM and metritis (d 1, 3, 7, 10, and 14 postpartum)

BCS LS

Endometritis

-28 -14 0 14 35 56

• Cows were observed daily from 0 to 60 d postpartum for mastitis and DA
• Milk yield and milk composition in the first 150 d postpartum are reported
Effect of Stocking Density on Immune, Health, Reproductive and Productive Parameters

- Cows were observed daily from 0 to 60 d postpartum for mastitis and DA
- Milk yield and milk composition in the first 150 d postpartum are reported
- Reproductive performance after first postpartum AI and pregnancy rate by 305 d postpartum are reported
Stocking Density According to Headlocks

Stocking density, % of headlocks

Days after start of replicate

- 100-Heifers
- 100-Cows
- 80-Heifers
- 80-Cows
Stocking Density According to Headlocks

Stocking density, % of headlocks

Days after start of replicate

Avg. stocking density:
80%L = 74%
100%L = 94%
Effects of Stocking Density on Displacement from the Feed Bunk

Displacement rate ($P = 0.23$): $80\text{SD} = 0.43 \pm 0.03$ vs $100\text{SD} = 0.47 \pm 0.03$

Lobeck et al. (2013)
Effects of Stocking Density on Daily Feeding Time

Lobeck et al. (2013)
Effect of Stocking Density on Lying Time

![Graph showing the effect of stocking density on lying time]

- **Mean daily lying time (h/d)**
- **Day relative to calving**

TRT - P < 0.05

Day - P < 0.01

TRT x Day - P < 0.01
Effect of Stocking Density on Health and Removal from the Herd

- No effect on immune and metabolic parameters and concentration of haptoglobin
Effect of Stocking Density on Health and Removal from the Herd

- No effect on immune and metabolic parameters and concentration of haptoglobin

<table>
<thead>
<tr>
<th></th>
<th>80SD, %</th>
<th>100SD, %</th>
<th>(P)-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFM, %</td>
<td>5.1</td>
<td>7.8</td>
<td>0.19</td>
</tr>
<tr>
<td>Acute metritis, %</td>
<td>9.9</td>
<td>9.4</td>
<td>0.64</td>
</tr>
<tr>
<td>Metritis, %</td>
<td>21.2</td>
<td>16.7</td>
<td>0.11</td>
</tr>
<tr>
<td>Endometritis, %</td>
<td>5.8</td>
<td>7.9</td>
<td>0.35</td>
</tr>
<tr>
<td>DA up to 60 DIM, %</td>
<td>1.0</td>
<td>0.7</td>
<td>0.78</td>
</tr>
<tr>
<td>Removed within 60 DIM, %</td>
<td>6.1</td>
<td>5.1</td>
<td>0.63</td>
</tr>
<tr>
<td>1st AI P/AI, %</td>
<td>36.8</td>
<td>44.0</td>
<td>0.29</td>
</tr>
<tr>
<td>FCM yield, kg/d (±SEM)</td>
<td>34.2 ± 0.5</td>
<td>33.8 ± 0.5</td>
<td>0.56</td>
</tr>
</tbody>
</table>
Effect of Prepartum Stocking Density on Pregnancy Rate

Cows not pregnant, %

Days postpartum

80SD
100SD
Stocking Density in the Prepartum Period and Performance
Stocking Density in the Prepartum Period and Performance

• 100% stocking density reduced lying time and increased displacement from the feed bunk
Stocking Density in the Prepartum Period and Performance

• 100% stocking density reduced lying time and increased displacement from the feed bunk

• Stocking density did not affect:
 – Immune and metabolic parameters
 – Incidence of health disorders during the postpartum period
 – Body condition and locomotion score during the peripartum period
 – Energy corrected milk yield in the first 150 d postpartum
 – Reproductive performance
Stocking Density in the Prepartum Period and Performance

• 100% stocking density reduced lying time and increased displacement from the feed bunk

• Stocking density did not affect:
 – Immune and metabolic parameters
 – Incidence of health disorders during the postpartum period
 – Body condition and locomotion score during the peripartum period
 – Energy corrected milk yield in the first 150 d postpartum
 – Reproductive performance

• Reduced close-up pen use in approximately 20%
Regrouping of Dairy Cows
Effects of Regrouping of Lactating Cows on Behavior and Milk Yield

von Keyserlingk et al. (2008)
Effects of Regrouping of Lactating Cows on Behavior and Milk Yield

- Experiment conducted at 'UBC', Canada, with 80 high producing cows

von Keyserlingk et al. (2008)
Effects of Regrouping of Lactating Cows on Behavior and Milk Yield

• Experiment conducted at 'UBC', Canada, with 80 high producing cows
 - 4 groups of 11 cows/pen (TEST pen) and 3 groups of 12 cows/pen (FONT pen)

von Keyserlingk et al. (2008)
Effects of Regrouping of Lactating Cows on Behavior and Milk Yield

• Experiment conducted at 'UBC', Canada, with 80 high producing cows
 - 4 groups of 11 cows/pen (TEST pen) and 3 groups of 12 cows/pen (FONT pen)

von Keyserlingk et al. (2008)
Effects of Regrouping of Lactating Cows on Behavior and Milk Yield

• Experiment conducted at 'UBC', Canada, with 80 high producing cows
 - 4 groups of 11 cows/pen (TEST pen) and 3 groups of 12 cows/pen (FONT pen)

von Keyserlingk et al. (2008)
Effects of Regrouping of Lactating Cows on Behavior and Milk Yield

• Experiment conducted at ‘UBC’, Canada, with 80 high producing cows
 - 4 groups of 11 cows/pen (TEST pen) and 3 groups of 12 cows/pen (FONT pen)

von Keyserlingk et al. (2008)
Effects of Regrouping of Lactating Cows on Behavior and Milk Yield

- Experiment conducted at 'UBC', Canada, with 80 high producing cows
 - 4 groups of 11 cows/pen (TEST pen) and 3 groups of 12 cows/pen (FONT pen)

von Keyserlingk et al. (2008)
Effects of Regrouping of Lactating Cows on Behavior and Milk Yield

- Experiment conducted at 'UBC', Canada, with 80 high producing cows
 - 4 groups of 11 cows/pen (TEST pen) and 3 groups of 12 cows/pen (FONT pen)
- Cows evaluated from 3 d before to 4 d after pen change

von Keyserlingk et al. (2008)
Effects of Regrouping of High Producing Dairy Cows on Behavior and Milk Yield

von Keyserlingk et al. (2008)
Effects of Regrouping of High Producing Dairy Cows on Behavior and Milk Yield

• Reduced feed time (↓ 15 min) during the first hour after pen change

von Keyserlingk et al. (2008)
Effects of Regrouping of High Producing Dairy Cows on Behavior and Milk Yield

• Reduced feed time (\(\downarrow 15\) min) during the first hour after pen change
• Increased number of displacements from the feed bunk (\(\uparrow 2.5x\)) in the first day after regrouping

von Keyserlingk et al. (2008)
Effects of Regrouping of High Producing Dairy Cows on Behavior and Milk Yield

- Reduced feed time (↓ 15 min) during the first hour after pen change
- Increased number of displacements from the feed bunk (↑ 2.5x) in the first day after regrouping

von Keyserlingk et al. (2008)
Effects of Regrouping of High Producing Dairy Cows on Behavior and Milk Yield

- Reduced feed time (↓ 15 min) during the first hour after pen change
- Increased number of displacements from the feed bunk (↑ 2.5x) in the first day after regrouping
- Reduced resting time (↓ 3 h) in the first day after regrouping

von Keyserlingk et al. (2008)
Effects of Regrouping of High Producing Dairy Cows on Behavior and Milk Yield

- Reduced feed time (↓ 15 min) during the first hour after pen change
- Increased number of displacements from the feed bunk (↑ 2.5x) in the first day after regrouping
- Reduced resting time (↓ 3 h) in the first day after regrouping
- Reduced milk yield (↓ ~4 kg) on the day of regrouping

von Keyserlingk et al. (2008)
Effects of Regrouping of High Producing Dairy Cows on Behavior and Milk Yield

- Reduced feed time (↓ 15 min) during the first hour after pen change
- Increased number of displacements from the feed bunk (↑ 2.5×) in the first day after regrouping
- Reduced resting time (↓ 3 h) in the first day after regrouping
- Reduced milk yield (↓ ~4 kg) on the day of regrouping

von Keyserlingk et al. (2008)
Pattern of Social Disturbance

All-In-All-Out system = Transient disturbance

Conventional system = Continued disturbance

Adapted from N. Cook
Pattern of Social Disturbance

All-In-All-Out system = Transient disturbance

Conventional system = Continued disturbance

Adapted from N. Cook
Pattern of Social Disturbance

All-In-All-Out system = Transient disturbance

Conventional system = Continued disturbance

Adapted from N. Cook
Pattern of Social Disturbance

All-In-All-Out system = Transient disturbance

Conventional system = Continued disturbance
Adapted from N. Cook
All-In-All-Out system = Transient disturbance

Conventional system = Continued disturbance

Adapted from N. Cook
Pattern of Social Disturbance

All-In-All-Out system = Transient disturbance

Conventional system = Continued disturbance

Adapted from N. Cook
Pattern of Social Disturbance

All-In-All-Out system = Transient disturbance

Conventional system = Continued disturbance

Adapted from N. Cook
Pattern of Social Disturbance

All-In-All-Out system = Transient disturbance

Conventional system = Continued disturbance

- Even though cows are social animals, the effects of regrouping large numbers of cows into large pens are questionable

Adapted from N. Cook
Pattern of Social Disturbance

All-In-All-Out system = Transient disturbance

Conventional system = Continued disturbance

- Even though cows are social animals, the effects of regrouping large numbers of cows into large pens are questionable
 - Dairies with 1,000 to 10,000 lactating cows = close-up pens 50 to 350 cows

Adapted from N. Cook
Weekly Movement of Prepartum Cows

- Far-off cows
- Close-up Cows
- Close-up cows
- Close-up heifers
- Close-up heifers
- Far-off heifers
- Far-off cows
- Hospital
- Maternity
- Postpartum heifers
- Postpartum cows

(Chart showing weekly movement of prepartum cows with various categories and sections.)
Weekly Movement of Prepartum Cows

- Far-off cows
- Close-up Cows
- Close-up cows
- Close-up heifers
- Close-up heifers
- Far-off heifers
- Far-off cows
- Hospital
- Maternity
- Postpartum heifers
- Postpartum cows

28 d prepartum
Weekly Movement of Prepartum Cows

- Far-off cows
- Close-up Cows
- Close-up cows
- Close-up heifers
- Close-up heifers
- Far-off heifers
- Far-off cows
- Hospital
- Maternity
- Postpartum heifers
- Postpartum cows
- Calving
Weekly Movement of Prepartum Cows

- Far-off cows
- Close-up cows
- Close-up heifers
- Close-up heifers
- Far-off heifers
- Far-off cows
- Hospital
- Maternity

12 h after calving
Weekly Movement of Prepartum Cows

24 to 48 h after calving
Weekly Movement of Prepartum Cows

5 pen moves within a 50 d period
Effect of Frequency of Regrouping in the Close-up Pen on Immune and Metabolic Parameters, Health, Production, and Reproduction

Silva et al. (2013a; 2013b); Lobeck et al. (2012)
Effect of Frequency of Regrouping in the Close-up Pen on Immune and Metabolic Parameters, Health, Production, and Reproduction

- 567 cows (> 2a lactation) assigned to 1 of 2 treatments:

Silva et al. (2013a; 2013b); Lobeck et al. (2012)
Effect of Frequency of Regrouping in the Close-up Pen on Immune and Metabolic Parameters, Health, Production, and Reproduction

- 567 cows (≥ 2ª lactation) assigned to 1 of 2 treatments:
 - AIAO (n = 259) - groups of 44 cows moved to close-up every 5 weeks (no new cows until all have calved)

Silva et al. (2013a; 2013b); Lobeck et al. (2012)
Effect of Frequency of Regrouping in the Close-up Pen on Immune and Metabolic Parameters, Health, Production, and Reproduction

• 567 cows (> 2a lactation) assigned to 1 of 2 treatments:

 – AIAO (n = 259) - groups of 44 cows moved to close-up every 5 weeks (no new cows until all have calved)

 • ↓Social disruption = ↑ DMI = ↑ Performance

Silva et al. (2013a; 2013b); Lobeck et al. (2012)
Effect of Frequency of Regrouping in the Close-up Pen on Immune and Metabolic Parameters, Health, Production, and Reproduction

• 567 cows (≥ 2a lactation) assigned to 1 of 2 treatments:
 – AIAO (n = 259) - groups of 44 cows moved to close-up every 5 weeks (no new cows until all have calved)
 • ↓ Social disruption = ↑ DMI = ↑ Performance
 • ↑ Cost

Silva et al. (2013a; 2013b); Lobeck et al. (2012)
Effect of Frequency of Regrouping in the Close-up Pen on Immune and Metabolic Parameters, Health, Production, and Reproduction

- 567 cows (> 2a lactation) assigned to 1 of 2 treatments:
 - AIAO (n = 259) - groups of 44 cows moved to close-up every 5 weeks (no new cows until all have calved)
 - ↓ Social disruption = ↑ DMI = ↑ Performance
 - ↑ Cost
 - Conventional (n = 308) - cows entering the close-up weekly to maintain stocking density of 44 Cows/48 headlock (5-15 new cows every week)

Silva et al. (2013a; 2013b); Lobeck et al. (2012)
Effect of Frequency of Regrouping in the Close-up Pen on Immune and Metabolic Parameters, Health, Production, and Reproduction

- 567 cows ($\geq 2^{\text{a lactation}}$) assigned to 1 of 2 treatments:
 - AIAO ($n = 259$) - groups of 44 cows moved to close-up every 5 weeks (no new cows until all have calved)
 - ↓ Social disruption = ↑ DMI = ↑ Performance
 - ↑ Cost
 - Conventional ($n = 308$) - cows entering the close-up weekly to maintain stocking density of 44 Cows/48 headlock (5-15 new cows every week

Silva et al. (2013a; 2013b); Lobeck et al. (2012)
Effect of Stocking Density on Immune, Health, Reproductive and Productive Parameters

- Weekly blood samples (innate immunity, hemogram, metabolites)
- Exams for RFM and metritis (d 1, 3, 7, 10, and 14 postpartum)

- Cows were observed daily from 0 to 60 d postpartum for mastitis and DA
- Milk yield and milk composition in the first 305 d postpartum are reported
- Reproductive performance after first postpartum AI and pregnancy rate by 305 d postpartum are reported
Close-up Regrouping Strategy and Stocking Density

Silva et al. (2013a)
Close-up Regrouping Strategy and Stocking Density

Average stocking density:

- Conventional = 86.9%
- AIAO = 71.9%

Silva et al. (2013a)
Effect of Regrouping Strategy on Displacement Rate from the Feed Bunk

Lobeck et al. (2012)
Effect of Regrouping Strategy on Percentage of Cows at the Feed bunk

- **AIAO**
- **Conventional**

The graph shows the percentage of cows eating at the feed bunk over time, with two strategies compared: AIAO and Conventional. The graph highlights the impact of regrouping strategy on feeding behavior throughout the day.
Effect of Prepartum Regrouping Strategy on Cortisol Concentrations

TRT - P = 0.48
Day - P < 0.01
TRT by Day - P = 0.09
*P = 0.04

Cortisol, ng/ml

Days relative to calving

AIAO
Conventional

-14 -7 0 7 14
Weekly Regrouping in the Close-up Period
Weekly Regrouping in the Close-up Period

- No effect on immune and metabolic parameters and concentration of haptoglobin
Weekly Regrouping in the Close-up Period

- No effect on immune and metabolic parameters and concentration of haptoglobin

<table>
<thead>
<tr>
<th>Items</th>
<th>Conventional</th>
<th>AIAO</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFM, %</td>
<td>10.9</td>
<td>11.6</td>
<td>0.82</td>
</tr>
<tr>
<td>Metritis, %</td>
<td>16.7</td>
<td>19.8</td>
<td>0.37</td>
</tr>
<tr>
<td>Acute metritis, %</td>
<td>1.7</td>
<td>3.6</td>
<td>0.22</td>
</tr>
<tr>
<td>DA, %</td>
<td>3.2</td>
<td>1.7</td>
<td>0.38</td>
</tr>
<tr>
<td>Cull/Death within 60 DIM, %</td>
<td>9.1</td>
<td>8.9</td>
<td>0.94</td>
</tr>
<tr>
<td>Cyclic by 53 DIM, %</td>
<td>90.1</td>
<td>90.2</td>
<td>0.97</td>
</tr>
<tr>
<td>P/AI 66 ± 3 d after 1st AI, %</td>
<td>36.3</td>
<td>39.9</td>
<td>0.41</td>
</tr>
<tr>
<td>ECM after 305 DIM, kg/d</td>
<td>34.4 ± 0.6</td>
<td>34.3 ± 0.7</td>
<td>0.88</td>
</tr>
</tbody>
</table>
Effects of Regrouping Strategy on Pregnancy Rate

Cox proportional hazard ratio - $P = 0.49$
Wilcoxon test of equality - $P = 0.85$

Silva et al. (2012)
Weekly Regrouping in the Close-up Period
Weekly Regrouping in the Close-up Period

- AIAO strategy reduces negative interactions among cows in small and medium size pens (< 45 cows)
Weekly Regrouping in the Close-up Period

- AIAO strategy reduces negative interactions among cows in small and medium size pens (< 45 cows)
 - The number of negative interactions appears to return to 'normal' within 2 to 5 d after regrouping
Weekly Regrouping in the Close-up Period

• AIAO strategy reduces negative interactions among cows in small and medium size pens (< 45 cows)
 - The number of negative interactions appears to return to ‘normal’ within 2 to 5 d after regrouping

• AIAO strategy had no benefit to:
Weekly Regrouping in the Close-up Period

• AIAO strategy reduces negative interactions among cows in small and medium size pens (< 45 cows)
 - The number of negative interactions appears to return to ‘normal’ within 2 to 5 d after regrouping

• AIAO strategy had no benefit to:
 - Immune and metabolic parameters
Weekly Regrouping in the Close-up Period

• AIAO strategy reduces negative interactions among cows in small and medium size pens (< 45 cows)
 - The number of negative interactions appears to return to ‘normal’ within 2 to 5 d after regrouping

• AIAO strategy had no benefit to:
 - Immune and metabolic parameters
 - Health, production, or reproduction
Weekly Regrouping in the Close-up Period

- AIAO strategy reduces negative interactions among cows in small and medium size pens (< 45 cows)
 - The number of negative interactions appears to return to ‘normal’ within 2 to 5 d after regrouping
- AIAO strategy had no benefit to:
 - Immune and metabolic parameters
 - Health, production, or reproduction
- ↓ Stocking density in AIAO strategy (AIAO = 73% vs conventional = 87%) = ↑ Cost to build close-up cows’ facilities in 16%
Health and Performance of AIAO Cows Regrouped before Calving
Health and Performance of AIAO Cows Regrouped before Calving

- 17 cows did not calve within 35 d and were regrouped within 4 d before calving (1 to 24 d before calving)
Health and Performance of AIAO Cows Regrouped before Calving

- 17 cows did not calve within 35 d and were regrouped within 4 d before calving (1 to 24 d before calving)

<table>
<thead>
<tr>
<th>Item</th>
<th>AIAO</th>
<th>Regrouped AIAO</th>
<th>P - value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Twins, %</td>
<td>3.8</td>
<td>0</td>
<td>0.42</td>
</tr>
<tr>
<td>Male calf, %</td>
<td>47.3</td>
<td>47.1</td>
<td>0.99</td>
</tr>
<tr>
<td>Metritis, %</td>
<td>20</td>
<td>17.7</td>
<td>0.81</td>
</tr>
<tr>
<td>DA, %</td>
<td>1.8</td>
<td>0</td>
<td>0.59</td>
</tr>
<tr>
<td>Cyclic by 53 DIM, %</td>
<td>89.6</td>
<td>100</td>
<td>0.19</td>
</tr>
<tr>
<td>P/AI after 1st AI, %</td>
<td>38.3</td>
<td>62.5</td>
<td>0.06</td>
</tr>
<tr>
<td>ECM, kg/d</td>
<td>32.3 ± 1.4</td>
<td>39.1 ± 2.4</td>
<td>< 0.01</td>
</tr>
</tbody>
</table>
Management Strategies to Optimize Health and Performance
Management Strategies to Optimize Health and Performance

• Aggressive reproductive management
Management Strategies to Optimize Health and Performance

• Aggressive reproductive management
• Close-up period > 21 d
Management Strategies to Optimize Health and Performance

- Aggressive reproductive management
- Close-up period > 21 d
- Anionic salts
Management Strategies to Optimize Health and Performance

- Aggressive reproductive management
- Close-up period > 21 d
- Anionic salts
- Feed bunk space
Management Strategies to Optimize Health and Performance

• Aggressive reproductive management
• Close-up period > 21 d
• Anionic salts
• Feed bunk space
 – 27.5-35” per cow
 • Pens without headlocks
Management Strategies to Optimize Health and Performance

- Aggressive reproductive management
- Close-up period > 21 d
- Anionic salts
- Feed bunk space
 - 27.5-35” per cow
 - Pens without headlocks
 - Smooth surface, easy to clean and remove stale feed
Management Strategies to Optimize Health and Performance

- Aggressive reproductive management
- Close-up period > 21 d
- Anionic salts
- Feed bunk space
 - 27.5-35” per cow
 - Pens without headlocks
 - Smooth surface, easy to clean and remove stale feed
 - Allow for 3% leftover
Management Strategies to Optimize Health and Performance

- Aggressive reproductive management
- Close-up period > 21 d
- Anionic salts
- Feed bunk space
 - 27.5-35” per cow
 - Pens without headlocks
 - Smooth surface, easy to clean and remove stale feed
 - Allow for 3% leftover
- Water availability
Management Strategies to Optimize Health and Performance

- Aggressive reproductive management
- Close-up period > 21 d
- Anionic salts
- Feed bunk space
 - 27.5-35” per cow
 • Pens without headlocks
 - Smooth surface, easy to clean and remove stale feed
 - Allow for 3% leftover
- Water availability
 - 2 to 5”/cow
Management Strategies to Optimize Health and Performance

- Aggressive reproductive management
- Close-up period > 21 d
- Anionic salts
- Feed bunk space
 - 27.5-35” per cow
 - Pens without headlocks
 - Smooth surface, easy to clean and remove stale feed
 - Allow for 3% leftover

- Water availability
 - 2 to 5”/cow
 - 1 trough/20 cows
Management Strategies to Optimize Health and Performance

- Aggressive reproductive management
- Close-up period > 21 d
- Anionic salts
- Feed bunk space
 - 27.5-35” per cow
 - Pens without headlocks
 - Smooth surface, easy to clean and remove stale feed
 - Allow for 3% leftover

- Water availability
 - 2 to 5”/cow
 - 1 trough/20 cows
 - Clean water
Management Strategies to Optimize Health and Performance

- Aggressive reproductive management
- Close-up period > 21 d
- Anionic salts
- Feed bunk space
 - 27.5-35” per cow
 - Pens without headlocks
 - Smooth surface, easy to clean and remove stale feed
 - Allow for 3% leftover
- Water availability
 - 2 to 5”/cow
 - 1 trough/20 cows
 - Clean water
- Comfort
Management Strategies to Optimize Health and Performance

• Aggressive reproductive management
• Close-up period > 21 d
• Anionic salts
• Feed bunk space
 – 27.5-35” per cow
 • Pens without headlocks
 – Smooth surface, easy to clean and remove stale feed
 – Allow for 3% leftover

• Water availability
 – 2 to 5”/cow
 – 1 trough/20 cows
 – Clean water

• Comfort
 – Heat abatement
Management Strategies to Optimize Health and Performance

• Aggressive reproductive management
• Close-up period > 21 d
• Anionic salts
• Feed bunk space
 – 27.5-35” per cow
 • Pens without headlocks
 – Smooth surface, easy to clean and remove stale feed
 – Allow for 3% leftover
• Water availability
 – 2 to 5”/cow
 – 1 trough/20 cows
 – Clean water
• Comfort
 – Heat abatement
 – Clean, dry comfortable bedding
Management Strategies to Optimize Health and Performance

- Aggressive reproductive management
- Close-up period > 21 d
- Anionic salts
- Feed bunk space
 - 27.5-35” per cow
 - Pens without headlocks
 - Smooth surface, easy to clean and remove stale feed
 - Allow for 3% leftover
- Water availability
 - 2 to 5”/cow
 - 1 trough/20 cows
 - Clean water
- Comfort
 - Heat abatement
 - Clean, dry comfortable bedding
- Grouping strategy
Management Strategies to Optimize Health and Performance

• Aggressive reproductive management
• Close-up period > 21 d
• Anionic salts
• Feed bunk space
 – 27.5-35” per cow
 • Pens without headlocks
 – Smooth surface, easy to clean and remove stale feed
 – Allow for 3% leftover
• Water availability
 – 2 to 5”/cow
 – 1 trough/20 cows
 – Clean water
• Comfort
 – Heat abatement
 – Clean, dry comfortable bedding
• Grouping strategy
 – Separate heifers from cows
Management Strategies to Optimize Health and Performance

- Aggressive reproductive management
- Close-up period > 21 d
- Anionic salts
- Feed bunk space
 - 27.5-35” per cow
 - Pens without headlocks
 - Smooth surface, easy to clean and remove stale feed
 - Allow for 3% leftover
- Water availability
 - 2 to 5”/cow
 - 1 trough/20 cows
 - Clean water
- Comfort
 - Heat abatement
 - Clean, dry comfortable bedding
- Grouping strategy
 - Separate heifers from cows
 - Reduced changes in feed composition
Management Strategies to Optimize Health and Performance

• Aggressive reproductive management
• Close-up period > 21 d
• Anionic salts
• Feed bunk space
 – 27.5-35” per cow
 • Pens without headlocks
 – Smooth surface, easy to clean and remove stale feed
 – Allow for 3% leftover

• Water availability
 – 2 to 5”/cow
 – 1 trough/20 cows
 – Clean water

• Comfort
 – Heat abatement
 – Clean, dry comfortable bedding

• Grouping strategy
 – Separate heifers from cows
 – Reduced changes in feed composition
 – 100% stocking density
Management Strategies to Optimize Health and Performance

- Aggressive reproductive management
- Close-up period > 21 d
- Anionic salts
- Feed bunk space
 - 27.5-35” per cow
 - Pens without headlocks
 - Smooth surface, easy to clean and remove stale feed
 - Allow for 3% leftover
- Water availability
 - 2 to 5”/cow
 - 1 trough/20 cows
 - Clean water
- Comfort
 - Heat abatement
 - Clean, dry comfortable bedding
- Grouping strategy
 - Separate heifers from cows
 - Reduced changes in feed composition
 - 100% stocking density
 - 80% if commingling
Thank you!!!

Ricardo C. Chebel
Department of Veterinary Population Medicine
College of Veterinary Medicine
University of Minnesota
chebe002@umn.edu
www.cvm.umn.edu