COASTAL BEND COTTON INSECT REPORT

Until the cotton insect situation becomes more complex and varied across the area I will not break my report into individual “county” reports. Instead, for the time being, I will simply write this report as a region-wide summary.

Cotton throughout the Lower Coastal Bend generally ranges from unplanted to the second true leaf stage. In a few isolated fields in San Patricio County, cotton has reached the fourth true leaf stage. While we did not scout every field that is scheduled to be scouted in the area, we did scout several of the most mature fields in each county, finding no thrips and just the occasional aphid. At this time there appear to be no emerging insect problems. One insect situation that was reported to this office over the past few days was the occurrence of cutworms at the edge of a cotton field in Kleberg County. Beyond this single situation, I’ve not heard of any insect pest related problems in the region’s cotton to date.

With recent rains and high wind, sand fighters have been out in force and appear to have done a good job. I did see some heavily wind-damaged cotton in Kleberg County, but this was an isolated case and does not appear to be a widespread problem. On a down note, last week’s rains have forced a few producers to replant in some fields.

Right now we need two to three weeks of dry weather to get everything planted and up to a strong start. With that strong start in mind, sunny days and warm temperatures would be ideal.

Cotton Scout Update - This year, like last year, Ty Glaser will be scouting San Patricio County cotton fields. Many of you may recall that Ty is a high school student from Odem. Helping us in Nueces and Kleberg Counties will be Phil Swope, a student at Texas A&M – CC. Phil is originally from Port Lavaca and has scouted cotton in that area with Farmland over the past several cotton seasons.

Pests to Watch For – Thrips and Aphids - Pests to be wary of from cotton emergence to before squaring are primarily thrips and cotton aphids.

Thrips are narrow, straw-colored insects about 1/15 inch long. They often infest the small, folded leaves in and around the terminal of the cotton plant and may attack young leaves, leaf buds, and very small squares. Thrips damage can cause a silvering of
the lower leaf surfaces, deformed or blackened leaves, terminal loss, and square loss. Thrips damage often causes the leaves of cotton to curl up or cup (don’t confuse this condition with wind/sand damage). If cool, wet conditions persist in fields, heavy thrips pressure can result in delayed fruiting and crop maturity. Control for thrips may be justified when the average number of thrips counted per plant is equal to the number of true leaves present at the time of inspection. Insecticidal control is rarely justified once plants have reached the 5 to 7 true leaf stage, or squaring has begun.

Cotton aphids range in color from light yellow to almost black. Aphids are usually found on the underside of leaves, on stems, and in the terminals of the cotton plant. Heavy and prolonged infestations can cause leaves to curl downward and older leaves to turn yellow and shed. Natural control by weather, predators, parasites, and pathogens can be effective in holding populations below damaging levels. Aphid population abundance can rise and decline for no apparent reason.

Insecticidal control should be delayed until infestations exceed 50 aphids per leaf and have been sustained for at least a week.

EDB

AMERICAN CYANAMID STOPS PURSUIT OF PIRATE LABEL

Pirate will not be available for use on U.S. cotton for beet armyworm even under a section 18. Little progress has been achieved in obtaining a label and it is my understanding that the company will not spend additional money on the product for the U.S. market. We do have a labeled material (Tracer) that is effective on beet armyworm but it must be applied when larvae are small. The benefit of Pirate was that one could wait longer to make an application and thereby possibly avoid any treatment; the caterpillar population often declines rapidly on its own. Without Pirate in those situations an application would have been applied due to earlier treatment requirement.

RDP

BOLL WEEVIL ERADICATION FARMER STEERING COMMITTEE

The Boll Weevil Eradication Foundation Farmer Steering Committee will meet Tuesday, April 4, at 1:00 p.m. The meeting will be at the Foundation District Office, 301 West 4th in Sinton.

WEATHER STATION NETWORK WEBSITE

Early stages of the weather station network are now available at http://cwp.tamu.edu. Currently only the basic weather search is running and several stations are not available but should be soon. Heat unit and evapotranspiration information should be available soon. Users of Netscape Navigator may need to clear the memory cache and hard drive cache within Netscape before entering the site. Click on “weather stations” and scroll down to a desired county station. On some computers a “no response” message may appear; click OK and keep going by clicking “begin search” etc. Currently real-time information is not available as in the past. Hopefully, in the future, a system can be worked out to provide near real-time data. Another location for weather information is the South Texas Cotton and Grain Association website (http://www.stcga.org/).

INTERNET SITES TO ACCESS NEWSLETTER

There are several ways to access our newsletter on the internet. It can be found on the Texas Pest Management Association website (http://www.tpma.org/) by selecting “unit newsletters” on the left column of TPMA’s main page. Click on the drop-down menu under “IPM Newsletters”, select “Coastal Bend” and click “go”. Another source is our Corpus Christi TAMU Center website (http://agfacts.tamu.edu/~rparker). Finally, the Department of Entomology (Extension) website at http://insects.tamu.edu/extension/ normally has the newsletter posted.

IMPACT OF INSECTICIDES ON NATURAL ENEMIES (BENEFICIAL ARTHROPODS) IN COTTON

A.N. Sparks and J.W. Norman, Texas Agricultural Extension Service at Weslaco, sampled cotton fields prior to and after commercial applications of insecticides to monitor effects of selected insecticides on the densities of beneficial arthropods. Insecticides evaluated included ULV malathion, Guthion, Vydate, Furadan + Vydate, pyrethroids (Ammo and Karate), Tracer, Regent and multiple applications of Karate + Guthion. The effects of single product conventional chemistry treatments varied somewhat with species of
beneficial arthropod, but in general, showed short-lived adverse effects on species impacted. Tracer showed the least adverse effects of all of the products tested. Regent appeared to have rather broad spectrum effects, with longer residual activity than the single product conventional chemistry treatments. The combination of Karate plus Guthion also appeared to have more severe effects, with a longer residual, than the single product applications, but this may have been a result of multiple applications rather than the chemistry. The entire final report of this project can be obtained from Dr. Sparks in Weslaco (956-968-5581).

TEXAS ASSOCIATION OF AGRICULTURAL CONSULTANTS

The Texas Association of Agricultural Consultants (TAAC) has developed a new web site (www.txaac.org) for use by its members and the entire agricultural community. Among the various attractions of this site is an interactive message area that can be accessed by all folks who visit this site. There are also areas within the message section that will provide users with weekly updates posted by the TAAC members from across the state and another site provided for Extension personnel to post various crop/pest alerts. Take a look at this site, participate in it, be sure other interested folks find out about it, and pass along any suggestions that you have for improving the effectiveness of this site to a member of the TAAC web site committee, chaired by Sid Hopkins, (hopkinsags@aol.com).

CORN & SORGHUM INSECTS

Chinch bugs are generally distributed in corn and sorghum throughout the Gulf Coast region but enough rainfall occurred to greatly reduce their effects on the crop. I suspect sorghum will remain vulnerable longer than corn. Generally, 1 chinch bug per seedling sorghum plant reduces grain yield by 2%. Apply insecticide when two or more chinch bugs are found on 20% of seedling plants less than 6 inches tall. On taller plants, insecticide "might be" justified when chinch bugs infest 75% of the plants (damage potential is reduced where conditions are correct for vigorous plant growth).

Chinch bugs are usually difficult to control with insecticides applied as rescue treatments to the foliage or directed to the base of plants. Foliar treatments (without directed spray to plant base) are not effective unless rainfall has sealed the soil and forced the bugs out of the ground and onto the foliage. If chinch bugs are around the root system in loose soil, large amounts of water (see labels for carbaryl, Furadan, Lorsban, Baythroid, Karate and Asana) are required for control. If you are not willing to use the required water or think it is not practical, then do not spend money on the insecticide. If you think there is a chance that the crop will be grazed, select an insecticide that allows grazing. Note that some insecticides are used under Texas 24C labels; therefore, instructions for use may not be on the regular label. We maintain copies of these local needs labels.

TIMING - THE KEY TO WEED CONTROL SUCCESS

Recent rains have enabled most South Texas crops to get off to an excellent start. Along with the crop, weeds also have an advantage. Abundant moisture and warm temperatures will cause the pests to grow rapidly. Do not delay plans for weed control treatment.

Product choices for post emergence, over-the-top, weed control in cotton, corn, and sorghum are better than at any time in history. Getting these product choices to work to control grasses and broadleaf weeds while maintaining maximum crop safety requires perfect timing. Applying a product too late will result in poor weed control, crop damage, or both. Applying a treatment too soon
will more than likely furnish the same disappointment.

Every label lists specific crop size and weed size for proper treatment. Follow the label precisely or be willing to accept less than ideal results; do not blame the product for applicator error or poor judgement. Most product labels call for treatment of very small weeds.

Along with timing, product rates are usually adjusted for size of both crop and weeds. Overdoses for control of large weeds (label size limit) applied when the crop is too small may cause injury. It goes without saying that field conditions (weed and crop size) are not always perfect. Poor soil and weather conditions many times prevent ideal treatment timing. Producers need to use careful judgement when deciding on products and rates. When in doubt always ask before treatment in order to avoid poor weed control results and/or crop damage.

COUMAPHOS PLASTIC STRIPS FOR PESTS IN BEEHIVES

EPA recently amended the current Section 18 use granted under FIFRA for coumaphos impregnated plastic strips to be hung in beehives to control varroa mites and small hive beetle (the beetle has not been found in Texas). It is relatively difficult to follow the imposed restrictions. More details are available from the Texas Department of Agriculture (www.agr.state.tx.us).

SCALE INSECTS ON ST. AUGUSTINEGRASS

Sugarcane scale (Aspidiella sacchari) is present on St. Augustinegrass in the Corpus Christi area. Records of previous locations are from the Texas Lower Rio Grande Valley and Florida. Currently we are not sure how much damage the insect is causing; although the specimens were collected from areas where the grass was dead. Healthy grass will be searched to see if scale is present; we believe the grass may have other problems.

INTERESTING INSECTS

Proturans (of the insect order Protura) are small, (0.6-1.5 millimeters), whitish, insects with simple metamorphosis. The head is somewhat cone-shaped, with the mouth parts adapted for sucking and largely withdrawn into the head. These insects do not have eyes or antennae. The first pair of legs serve principally as sensory organs and are carried in an elevated position like antennae. Proturans undergo only 3 molts; at hatching there are 9 abdominal segments and another is added at each molt (12 in adults).

These insects live in moist soil or humas, in leaf mold, under bark and in decomposing logs; they feed on decomposing organic matter. The order Protura is divided into four families; 21 species are known from North America.

Proturan

Educational programs conducted by the Texas Agricultural Extension Service serve people of all ages regardless of socioeconomic level, race, color, sex, religion, handicap or national origin. The information given herein is for educational purposes only. References to commercial products or trade names is made with the understanding that no discrimination is intended and no endorsement by the Cooperative Extension Service is implied.

The Texas A&M University System, U.S. Department of Agriculture, and the Commissioners Courts of Texas Cooperating