A Recreation Project that was Rejected: Lessons from a Failure

John L. Crompton
Mark E. Havitz

ABSTRACT: New service ideas in the parks and recreation field are not always successful. They may be rejected by staff, elected officials, or through citizen antipathy or apathy. The case study reported here analyzes a new service idea that failed. The project was the construction of a wave pool in an SMSA with a population of approximately 120,000. A model of the diffusion of innovation process provides a framework for the analysis. Reasons for the failure are identified and suggestions for reducing the probability of new service ideas failing are made.

KEYWORDS: new ideas, innovation diffusion, community support, wave pool.

AUTHORS: John L. Crompton is Professor of Recreation and Parks in the Department of Recreation and Parks, Texas Agricultural Experiment Station at Texas A&M University. Before joining Texas A&M he was the managing director of a major consulting company involved in the management, planning and design of recreation, park and tourism facilities for a wide range of clients in both the public and private sectors. Dr. Crompton has written numerous articles in the recreation and marketing literature, and his most recent book is Marketing Government and Social Services, published by Wiley in 1986. In the past five years he has conducted numerous workshops for park and recreation practitioners on financing and marketing leisure services.

Mark E. Havitz is a Ph.D. candidate in the Department of Recreation and Parks at Texas A&M University. He completed his master’s degree in the Department of Park and Recreation Resources at Michigan State University. His research interests include the marketing of recreation and tourism services and public perceptions of private and public sector recreation facilities.

Recreation and park managers are often made aware of new, potentially exciting ideas that could enhance recreation opportunities in their communities. Unfortunately, these ideas sometimes fail to reach fruition because either there is an inherent reluctance on the part of influential members of the community to accept new ideas, or the person who generates a new idea lacks the depth of knowledge or communication skills necessary to convince others of the project’s merits. Rogers and Shoemaker (1971) define an innovation as

[an] idea, practice, or object perceived as new by an individual. It matters little, so far as human behavior is concerned, whether or not an idea is objectively new as measured by the lapse of time since its first use or discovery. It is the perceived or subjective newness of the idea for the individual that determines his reaction to it. If the idea seems new to the individual, it is an innovation. (p. 19)
This paper reports a case study of a recreation project that failed to gain public acceptance. The purpose is to examine the project and, with the benefit of hindsight, suggest steps that—had they been taken—might have averted failure. The project was a wave pool that was proposed for the City of College Station, Texas. The paper will outline the project’s history from inception to its demise. The case study is then integrated into a diffusion of innovation model that examines important attributes of new ideas and explores how well the wave pool’s failure is explained by the model. Finally, lessons learned from the failure are identified and suggestions are made with regard to increasing citizen support for innovative projects.

History of the Wave Pool Proposal

In 1983 the City of College Station, Texas, was developing a new regional 45-acre park at the edge of the city. The city was growing steadily in the direction of the proposed pool site. The city’s park master plan included a swimming pool, and the residents passed a bond issue that provided funds for its construction. The city already operated two pools for its 40 thousand residents. The total net operating loss of the two pools was $120,000 per year. It was projected that when the new pool was built it would lose $40,000 per year, so the net operational loss on the three pools would increase to $160,000 per year.

The city staff suggested that instead of building another traditional pool, a wave pool should be constructed. There were two primary reasons for this suggestion. First, a wave pool offered a different and possibly superior recreation experience compared to a traditional pool. This was explained by a Recreation and Park Board member in an interview with the local press in the following terms (Taschinger 1983b):

We looked at what people do in a swimming pool. We found out that the last thing they do is swim. They go to get a tan, to show off to the opposite sex, to read a book, or to jump in when they get hot—but very few persons swim up and down the pool. Quite simply they play in the water. So why are we building these rectangular pools for people to swim up and down in when they don’t do that? We should build a play environment like that at the beach—that is what people want.

Eric Reickel, then manager of the Oakland County, Michigan Parks and Recreation Commission, which installed the second publicly run wave pool in the United States, supported this contention. After viewing the first publicly operated wave pool in Decatur, Alabama, Reickel stated, “I was convinced it was the only pool for recreational swimming and a big improvement over what I call ‘sheep dips’—conventional rectangular pools” (Rieckel 1982:3). A manager from Fairmont, West Virginia, where there is a wave pool, was quoted in the Bryan-College Station Eagle as stating,

I was adamantly opposed to it, but since this summer I’ve been turned around. It has made a believer out of me. I am very, very impressed. There’s so much difference between a wave pool and a regular pool. When the waves go on, you see that little extra splurge in
people's eyes. After being around this wave pool, I don't see how anyone can operate a regular pool. (Taschinger 1983a)

The second reason for suggesting a wave pool was economic. Experience in other parts of the country suggested it was probable that the revenues produced from such a facility would at least equal operational costs and possibly exceed them. Thus, instead of losing $40,000 per year, a wave pool was likely to break even or possibly yield a surplus to be used to partially offset the operating losses of the other two pools. The City of Garland, Texas, was considering a similar project at about this same time. An article in The Dallas Morning News stated, "Earlier this year, some Garland officials were questioning how well the city's new wave-action pool would be received. But now, with the end of the swimming season only one weekend away, the pool not only has paid for itself but also has covered losses at the four other city pools" (Housewright 1984).

When the College Station staff brought forward its proposal, there were approximately 60 wave pools operating in the United States. Most of these were in the private sector, popularized by the development of aquatic theme parks, but over a dozen were operated by governmental agencies.

The design of a wave pool is distinctively different from traditional rectangular pools, in part because of its fan-like shape. When the wave-activating mechanism is set in motion, waves roll from the deep end (depth of eight feet), where they are highest, down to the shallow end (zero depth), declining in height as they dissipate along the widening fan-shaped pool. A typical wave pool shape is shown in Figure 1. The usual operating procedure is to switch the waves on and off at 15-minute intervals, so those who do not enjoy the waves can use the pool without waves.

The Public's Reaction

City staff presented the concept of a wave pool to the Recreation and Park Advisory Board for consideration. Representatives of the Advisory Board, the City Council and the City staff went to the Dallas-Fort Worth area to see a wave pool in a commercial aquatic park and another wave pool that was under construction by a public agency in the area. Their visit included discussions with officials involved in the development and operation of these facilities. A feasibility study had been commissioned from consultants who projected attendance and used this information for pool size recommendations. The study implied that the wave pool would be profitable, but the consultants were not required to estimate operational income and expense. The absence of these data caused the Advisory Board not to make a firm recommendation to the City Council, although a majority agreed with the concept in principle.

The Advisory Board's meeting and its agenda were announced in the media, and a number of citizens attended to express their concerns to the Board. Three primary concerns were raised by residents: safety, traffic congestion, and the possibility of private sector involvement in the project. Each of
Typical Wave Pool Plan View

Figure 1.
them could be countered with logical, rational answers. However, the concerns were expressed with considerable emotion and the citizens present were not responsive to the counter arguments.

First, there was concern that waves would make the pool unsafe for small children. Although no empirical studies that compared the safety records of wave with non-wave pools were available, the continued popularity of these pools after 15 years of experience with them and the rapid increase in their number in North America suggests a high level of safety confidence among private operators, government agencies, and insurance companies that underwrite any liability damages incurred. As of April 1983 there had been two drownings in 23 million admissions at wave pools, a rate that compares very favorably with standard pools (Taschinger 1983a). Lifeguard stations at wave pools are equipped with "kill buttons" that will shut off the waves in three seconds if a patron appears to be in trouble in the water (Briggs-Bunting 1976).

Second, residents from the area in which the pool was to be located were concerned that a wave pool would be so popular that the traffic through their neighborhood would increase. However, the pool site was in a regional park, and access to it was along a regional road system that did not cut through neighborhoods.

Third, it was argued that if a wave pool was capable of making a profit, then the private sector, not city government, should provide the facility as it had elsewhere. However, the facilities operated by the private sector were in much larger metropolitan areas. The population of the College Station area was too small to generate the attendance necessary for a private investor to obtain a return on the capital investment. The city was not anticipating recovery of capital costs. Further, the city already owned the five acres of land needed for the facility, whereas a private investor would have to add the purchase of land to the capital cost of the investment. In summary, it was not likely that the private sector could operate a wave pool profitably.

Two days after the Recreation and Park Advisory Board meeting, the City Council met to make a decision. In the intervening two days a flier was written and circulated in the community. It listed the three arguments described above as reasons why the wave pool should not be supported. In this same time period, a petition opposing the wave pool was circulated, and it was signed by 400 residents.

The wave pool was the main news story in the local media during these two days. Opponents received considerable coverage and reiterated their concerns, focusing upon the most emotional one—children's safety. The only supporters interviewed or cited in the media were city staff and some Recreation and Park Advisory Board members. There were no visible supporters among the general citizenry.

Citizen attendance at the City Council meeting was the largest of the year. Many citizens came forward to speak against the wave pool, and no citizens spoke in favor of it. Confronted with this emotional opposition, and
seeing no evidence of citizen support, the Council voted 5–2 to proceed with a traditional pool rather than the proposed wave pool. The outcome of this vote could have been predicted on the basis of a study by Bingham et al. (1981) who make the point that

most of the barriers to innovation are political, not technical. The political risk of failure is a powerful constraint on innovation. When the chance for success is less than 100 percent, there is little incentive for the political leadership to try to overcome resistance to change. The benefits of innovation are not always apparent to the public. (p. 10)

Decision makers must be convinced that there is some public sentiment in favor of adoption. This sentiment was not visible to the College Station City Council on the wave pool matter.

A Model of the Diffusion of Innovation Process

Why did the wave pool fail? Was its failure inevitable or, with the benefit of hindsight, were there some actions that could have been taken to avert its failure? The process by which innovative products are diffused into society has been the subject of a great many studies in the past three decades. Rogers (1983) has identified over 3,000 research publications concerned with the diffusion of innovations in disciplines ranging from rural sociology and political science in marketing and communications.

Over one half of this work, much of it empirical, has been completed in the last 15 years. As a result, a well-developed conceptual base exists for examining the diffusion of innovation process. The five-stage model developed by Rogers (1983; 165) is widely recognized, and it provides a basis for examining the College Station wave pool case (Figure 2). Only the first three stages are relevant to this case because of the failure of the project to gain public approval. Therefore, only those three stages are examined.

Specifically, Rogers suggests the following:

1. Knowledge occurs when an individual (or other decision-making unit) is exposed to the innovation’s existence and gains some understanding of how it functions.
2. Persuasion occurs when an individual (or other decision-making unit) forms a favorable or unfavorable attitude toward the innovation.
3. Decision occurs when an individual (or other decision-making unit) engages in activities that lead to a choice to adopt or reject the innovation.
4. Implementation occurs when an individual (or other decision-making unit) puts an innovation into use.
5. Confirmation occurs when an individual (or other decision-making unit) seeks reinforcement of an innovation-decision already made, but he or she may reverse this previous decision if exposed to conflicting messages about the innovation. (p. 164)

There has been some debate as to whether “need for the benefits brought by an innovation” or “awareness of the innovation” constitutes the stimulus for the knowledge stage. It would appear, in the College Station wave pool case, that many of the residents were exposed to the concept with the emergence of the local proposal but had not felt a precuratory need for the potential benefits—i.e., the residents did not specifically request that a wave pool be
Figure 2

The innovation-decision process is the process through which an individual (or other decision-making unit) passes from first knowledge of an innovation, to forming an attitude toward the innovation, to a decision to adopt or reject.
built. In this case the Parks and Recreation Department assumed the role of a change agency (an organization that influences citizens' innovation decisions in a direction deemed desirable by the organization) by creating awareness of the innovation in the community. This role is usually a more difficult task than simply working to provide an innovation that had been specifically requested by a specific clientele or market. Brown (1975) supports the contention of Agnew, Brown, and Herr (1978) who state that

an important factor in the community innovation process is the 'need' for an innovation. . . . need is defined differently by the different circumstances surrounding decision-making for sponsored and local initiative innovations. Specifically, if a sponsor is propagating an innovation, need is defined by the sponsor when he directs information and support to certain types of community. (p. 7)

Further, Agnew, Brown, and Herr define community as "a municipality within which specific types of public goods and services are delivered to a resident population and the 'adopter' in the innovation process is a local government body or agency" (p. 4).

It could be argued, then, that different actors in the City of College Station were assuming two roles in this case. The bureaucratic organization (the Recreation and Parks Department) was acting as the change agency, while the policy making body (City Council) was actually the adopter. Thus, the College Station wave pool example differs from many adoption processes because the change agency (the City) was not specifically attempting to convince a large number of individuals (residents) to adopt and use the innovation, but instead was trying to convince a small subset of individuals who represented the residents—i.e., the City Council. Brown (1981) points out that "unless some government, entrepreneurial or non-profit organization makes the innovation available at or near the location of the potential adopter, by establishing a diffusion agency, a person or group will not have the option to adopt" (p. 8).

Several researchers, e.g., Coleman, Katz, and Menzel (1966), have suggested that information is often first presented at this knowledge stage (see Figure 2) by mass media outlets. In the College Station case, most of the information that was aired by the media consisted of negative reactions from various citizens opposed to the project. These negative comments were many citizens' first exposure to the wave pool concept. There was little attempt on the part of the Recreation and Parks Department to compile relevant persuasive information on wave pools and disseminate it through mass media channels or public meetings.

The wave pool proposals' problems were exacerbated at the persuasion stage. At this stage, Rogers' model postulates that individuals have been introduced to the concept and are at the point of asking questions regarding the consequences of the innovation, potential benefits to be derived, and relative advantage compared with the status quo. Agnew, Brown, and Herr (1978; 36) have suggested that public programs concerned with the diffusion
of innovations have largely employed an adoption perspective, and the events reported in this case study were no exception. They added that a basic tenet of this type of diffusion strategy is that individuals may be persuaded to adopt through communications. Most of the empirical work suggests that the subjective opinion of peers is most important at this stage, especially if a peer’s opinion is based upon personal experience with the new idea. Social reinforcement is crucial to reducing uncertainty about the new idea. The efforts in this area taken by the College Station staff were clearly inadequate, as will be apparent later in this study.

Although a number of wave pools were in use elsewhere, this was a very innovative concept to the residents of College Station. Five attributes have consistently been found to influence the likelihood of an innovation being adopted at the persuasion stage (Rogers 1983): complexity, compatibility, relative advantage, observability, and trialability (p. 211). An assessment of the College Station wave pool against these five criteria offers insights into why the pool was rejected.

Compatibility

Compatibility refers to the degree to which a new facility is consistent with the existing values, past experiences and current needs of its potential users. If a service is compatible, then it is more meaningful to intended recipients, and there is greater security and less risk to the user that it will not deliver the desired experience. A new program with a perceived image that is not consistent with cultural norms will be accepted less rapidly than one that is consistent (Rogers 1983: 223).

The wave pool was not compatible with prevailing norms and expectations. Not only did the pool offer a different kind of experience, but the total concept was different. The environs of a traditional pool typically consist of a small, concrete deck area. For the wave pool a very different ambiance was proposed. Emphasis was to be on creating a relaxed, leisurely atmosphere characterized by such features as a large deck area, extensive planting and landscaping, artificial grass on the immediate poolside, children’s playground areas, volleyball nets, a large number of lounge-type chairs, and picnic facilities. It was aimed primarily at teenagers and young adults.

The primary instigators of the protest movement against the pool were parents of young children. Their evaluation of the proposed pool was based upon their perceptions of its appropriateness for their children. Clearly, the type of pool envisaged was not compatible with their perceptions of what it should be. The wave pool concept might also have been conceptualized as being part of a larger water theme park development by College Station residents because most wave pools in Texas are part of one of these larger operations. This may have been a partial cause of local objections regarding potential traffic problems, even though the proposed site is serviced by a well-developed regional road system, and the proposed parking facilities were considered to be adequate to handle the projected visitation level at the wave pool.
Complexity

Generally, the more complex a new facility is, the more difficult it is to persuade people to accept it. The wave pool was a relatively complex concept. It was not to be simply a tank filled with water like a traditional pool. Its environs were to be different from those of a traditional pool, and it evoked concerns about its safe use by young children. The regularly scheduled shutdown of the wave-generating machinery to provide a calm pool may not have been widely understood. The wave pool was new and different to many residents of College Station, most of whom had only been exposed to traditional pools. It did not fit their existing concept of what constituted a public swimming pool.

If a new service is confusing to potential users, then it is more difficult for them to evaluate its usefulness, and its easy acceptance is unlikely. Although the concept was relatively complex, no major effort was made to inform or educate the citizens about what it entailed before the proposal was presented to Council. A film of a wave pool in action was obtained from the manufacturers shortly before the Advisory Board meeting, but by then it was too late to use it in presentations around the community to inform the citizens.

Relative Advantage

Relative advantage is the degree to which a new service is perceived to be superior to one that it supersedes or one with which it competes. If benefits are not perceived to be greater than those that may accrue from using other services, potential users lack incentive to use the service. It does not matter whether the service has a great deal of "objective" advantage. What does matter is whether or not the target clientele perceives it as being advantageous.

The advantages of the wave pool over the traditional pool were obvious to the city staff and the Park Board and City Council members who had visited the facilities in the Dallas-Fort Worth area. In addition to the site visit, city staff and some of the Advisory Board had seen the manufacturer's film, talked to other wave pool operators around the country and, in some instances, seen their facilities, and had investigated the implications for the city of the proposed facility in some depth. As a result, they were fully convinced of its relative advantage. In contrast, the relative advantage of the wave pool was difficult for potential users to assess because they were unfamiliar with it. The city had not encountered opposition to the project in its early stages of development. Consequently, staff members did not adequately prepare themselves to communicate the relative advantage of the innovation to city residents.

Observability

Observability refers to the degree to which information regarding a new service may be easily observed by other people. Communication was aided because a wave pool is a physical product that can be displayed. However, the concept is not easy to convey through the use of words. Visual methods are needed to communicate what is involved.
Visual communication tools were available. A manufacturer of wave pool equipment had produced a movie explaining and illustrating the concept. Slides of existing wave pools elsewhere could have been developed. Testimonials, which specifically addressed and rebutted the concerns raised by pool opponents, could have been taken from residents in communities that had experience with wave pools and integrated into a slide/tape presentation. Bingham et al. (1981) point out that there are several organizational factors that have some effect on promotion effectiveness for innovations, including the number of transfer techniques (different methods of communicating a message as described above), the total budget allotted to the project, and the technical capability of the staff (p. 60).

None of these opportunities were grasped by the pool's proponents. There were two reasons for this. First, it was only when citizens came to the Advisory Board to protest the wave pool that city officials realized there was any strong emotional opposition to the project. Before this, officials had not recognized the need to thoroughly explain the concept. To the city officials who had seen wave pools, their superiority was obvious, and the need to communicate this superiority to the public was not realized.

The second reason for not making more of an effort to inform the public was the restrictive time frame. There was only a three-week period between the realization that a wave pool might be feasible in College Station and the deadline (created by the need to expend federal grant funds for the project by a specified date) by which the city council was required to make a decision. The consultants' feasibility study was undertaken in this period, but the time frame was too short for them to gather visual materials and use them in an extensive series of presentations to communicate the concept to the public.

Trialability

The final attribute that influences the ease with which an innovation is adopted addresses the degree to which it can be tried on a limited basis. New services that can be tried out before a substantial commitment is made will generally be accepted more rapidly than programs that are not trialable. Inhibitions arising from risk or uncertainty may be removed through trial.

The ability to use an innovation on a trial basis often assists its acceptance (Klonglan 1963). However, an introductory use, while desirable, it not always feasible. Such is the case with a wave pool, unless there are similar facilities in close proximity. Magill and Rogers (1981) found that such a trial may be substituted effectively for many people if it can be arranged for some members of the social system. The two nearest wave pool facilities were located 120 miles and 200 miles away. One of them had been opened for one summer season and the other for two seasons. Consequently, very few College Station residents had been able to try this type of facility.

Baer, Johnson, and Merrow (1977) report that federal government agencies often sponsor "demonstrations" with the intent of speeding diffusion in society. For example, the Environmental Protection Agency has recently
demonstrated technological improvements in mechanized refuse collection, and the Energy Research and Development Administration has sponsored demonstrations of various synthetic fuels on a local level. Specific objectives of these demonstrations include the reduction of uncertainties related to technology, cost, and demand of the innovation and dissemination of already existing information about the demonstration (p. 952).

Rogers (1983) argues that

For some individuals and for some innovations the trial of a new idea by a peer like themselves can substitute, at least in part, for their own trial of an innovation. This "trial by others" provides a kind of vicarious trial for an individual. Change agents often seek to speed up the innovation-process for individuals by sponsoring demonstrations of a new idea in a social system, and there is evidence that this demonstration strategy can be quite effective, especially if the demonstrator is an opinion leader. (p. 172)

Those citizens who were taken to view operating wave pools may not have been the best individuals to view the projects, even though some were the individuals who would vote on the acceptance or rejection of the idea.

Choosing Opinion Leaders and Change Agents

A major shortcoming of the College Station effort, which contributed to the ultimate rejection of the wave pool, was the lack of a well-defined role for specific identified change agents whose task would be to influence College Station residents' decisions in the direction deemed desirable by the change agency (the Parks and Recreation Department). There were two primary reasons for this. First, there was inadequate time to gather the proper information and disseminate it effectively, because the decision to explore the wave pool option was made only three weeks prior to the City Council's voting deadline. Second was the surprise the Department experienced when the topic turned into a controversial issue.

However, even if these two problems had been recognized, the project might still have had difficulty gaining approval, because the task of identifying the best individuals to fill the change agent role is a difficult one for the change agency to accomplish. Rogers (1983:247) has outlined a widely accepted conceptualization that categorizes people's willingness to adopt innovative ideas (Figure 3).

The categories described in this conceptualization are ideal types, designed to make comparisons possible; thus, a given individual may or may not fall directly into one of the categories. The categories' sizes shown in Figure 3 were derived (Rogers 1983) by drawing vertical lines marking off the standard deviations on either side of the mean. The result is a standardized percentage of respondents in each category. Therefore, the percentages should be viewed as approximations.

Briefly, innovators are often "venturesome, daring, and willing to take risks," but they are not necessarily the best people to recruit as opinion leaders. Early adopters are known for "successful and discrete use of new ideas" and hold a high degree of opinion leadership in most social systems.
Figure 3

The primary role of early adopters is to decrease uncertainty by adopting new ideas and disseminating information. Members of the early majority are best characterized by the term ‘deliberate,’” while late majority people may be labeled “skeptical” and laggards characterized as being “very suspicious.”

Individuals who fall into the categories of innovator and early adopter are most often sought out by change agencies because of their general willingness to try new products and ideas. The early adopter category has the greatest degree of opinion leadership in most social systems. Therefore, members of this group, or people who share similar characteristics with this ideal type, are likely to be promising choices for change agents. Rogers (1983) states that

Change agents sometimes mistake innovators for opinion leaders. They may be the same individuals, especially in systems with very modern norms, but they often are not. Opinion leaders have followings, whereas innovators are simply the first to adopt new ideas. When the change agent concentrates communication efforts on innovators, rather than on opinion leaders, the results may help to increase awareness [and] knowledge of the innovation, but few clients will be persuaded to adopt. The innovator’s behavior does not necessarily convince the average client to follow suit. (p. 332)

Even given this taxonomy it may be difficult for an agency to actually identify the best people to carry its message. The College Station Department made an attempt to expose some members of the community to the wave pool concept by taking several City Council and Park Board members to the Dallas-Fort Worth area to observe a functioning wave pool. The people selected, however, may not have been the best people to involve, because political leaders are not necessarily opinion leaders. Rogers (1983:278) offers four different methods for choosing opinion leaders (see Figure 4); if more time had been available, the city could have used these methods to ensure that the individuals targeted to disseminate wave pool information to the community would have the best chance of positively influencing the greatest number of people.

The College Station wave pool would have been more likely to gain acceptance if there had been a longer time period available between inception of the idea and the City Council vote. It takes time, using each of the suggested methods, to identify good opinion leaders. Once selected, these opinion leaders must be convinced of the merits of the proposed innovation. This could have been done using many of the approaches described previously. The idea of taking people on-site to view existing wave pool facilities was a good one. In addition, opinion leaders could have been briefed by manufacturers’ representatives, video tapes, slide shows, and testimonials from managers of operating wave pools.

Concurrent to this effort to communicate the benefits of the innovation to community opinion leaders, the city could have provided local print and broadcast media with more material that may have encouraged them to develop more positive stories on the proposed innovation.

After a core of residents had reached the knowledge stage regarding the innovation, city staff and opinion leaders could have begun persuasive efforts
Figure 4

Advantages and limitations of four methods of measuring opinion leadership and diffusion networks

<table>
<thead>
<tr>
<th>Measurement Method</th>
<th>Description</th>
<th>Questions Asked</th>
<th>Advantages</th>
<th>Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Sociometric method</td>
<td>Ask system members to whom they go for advice and information about an idea.</td>
<td>Who is your leader?</td>
<td>Sociometric questions are easy to administer and are adaptable to different types of settings and issues. Highest validity.</td>
<td>Analysis of sociometric data is often complex. Requires a large number of respondents to locate a small number of opinion leaders. Not applicable to sample designs where only a portion of the social system is interviewed.</td>
</tr>
<tr>
<td>2. Informants' ratings</td>
<td>Subjectively selected key informants in a social system are asked to designate opinion leaders.</td>
<td>Who are the leaders in this social system?</td>
<td>A cost-saving and time-saving method compared to the sociometric method.</td>
<td>Each informant must be thoroughly familiar with the system.</td>
</tr>
<tr>
<td>3. Self-designating method</td>
<td>Ask each respondent a series of questions to determine the degree to which he/she perceives himself/herself to be an opinion leader.</td>
<td>Are you a leader in this social system?</td>
<td>Measures the individual’s perceptions of his/her opinion leadership, which influence his/her behavior.</td>
<td>Dependent upon the accuracy with which respondents can identify and report their self-images.</td>
</tr>
<tr>
<td>4. Observation</td>
<td>Identify and record communication network links as they occur.</td>
<td>None</td>
<td>Unquestioned validity.</td>
<td>Obtrusive, works best in a very small system, and may require much patience by the observer.</td>
</tr>
</tbody>
</table>

by presenting the wave pool concept to groups of community leaders at
meetings of neighborhood associations, service and fraternal organizations
(e.g., Lions Club, Jaycees, Rotary Club), and other community gatherings.
Again, videotapes, slide shows, testimonials, and other forms of personal
communications would have been appropriate. Lambright and Flynn (1980)
have made the point that it is not simply who backs the innovation, but how
they back it that matters (p. 261). The presentations at these gatherings would
stress the compatibility and relative advantage of the wave pool concept with
regard to the local situation, while attempting to decrease the complexity of
the idea. They would also enhance the observability of the innovation and
provide a substitute for trialability of the wave pool.

Conclusions

This study has used the diffusion of innovation concept to explain why
a seemingly beneficial new recreation product was rejected by a local com-
community, which instead opted to support a facility that duplicated services
already available. The study explained a dynamic model of the innovation
diffusion process, which incorporates five attributes of innovative products
(complexity, compatibility, relative advantage, observability, and trialability)
and used these concepts to explain the failure of the College Station wave
pool. Finally, the study delineated some ideal types of individuals with regard
to their receptiveness toward innovations and suggested some methods for
selecting local citizens to champion new recreation products.

Specific problems that could have been circumvented were identified.
First, the city staff failed to anticipate the negative reaction that developed
in the community, and thus had not prepared effective counter arguments.
Second, the time between the public proposal of the wave pool and the City
Council vote was too short. Third, more use of mass media publicity prior
to the proposal of the local pool would have created a higher level of awareness
of wave pools among local residents. Fourth, greater effort should have been
taken in selecting appropriate opinion leaders. These opinion leaders could
have been effective in influencing public opinion through the use of personal
communication efforts at various public meetings.

This case study of a failure is intended to offer some insights for recreation
and park managers considering the introduction of a new service into their
program offerings. Hopefully, lessons which emerged from this case will
assist others and reduce the number of promising park and recreation inno-
vations that fail.

References

