ATTITUDE DETERMINANTS IN TOURISM DESTINATION CHOICE

Seoho Um
Kyonggi University, Korea

John L. Crompton
Texas A&M University, USA

Abstract: A two stage approach to travel destination choice was developed based on the construct of an evoked set. The two stages were evolution of an evoked set from the awareness set; and destination selection from the evoked set. It was hypothesized at both stages that travel destination choice depends upon attitude toward each alternative. Attitude was operationalized as the difference between perceived inhibitors and perceived facilitators. A longitudinal approach was used to collect survey data from respondents at both stages in their decision process. Results of the tests suggested that attitude was influential in determining whether a potential destination was selected as part of the evoked set and in selecting a final destination. Keywords: travel, destination choice, evoked set, image, attitude, perception, utility.

Résumé: Les déterminants d'attitude dans le choix de destination de tourisme. On a développé une méthode à deux étapes pour étudier le choix de destination de voyage en se basant sur le concept de l'ensemble évoqué. Ces deux étapes sont l'évolution de l'ensemble de conscience à l'ensemble évoqué, et ensuite l'évolution de l'ensemble évoqué au choix final de destination. Pour les deux étapes, on a supposé que le choix de destination de voyage dépend de l'attitude envers chaque option. On explique l'attitude comme la différence entre la perception des facteurs inhibiteurs et la perception des facteurs facilitants. On a recueilli des informations à chacune des deux étapes du processus de décision pour étudier l'évolution de l'attitude de chaque personne interrogée. On en conclut que l'attitude influence le choix d'une destination comme partie de l'ensemble évoqué et le choix final d'une destination. Mots-clés: voyage, choix de destination, ensemble évoqué, image, attitude, perception, utilité.

INTRODUCTION

The image of a place as a pleasure travel destination is a gestalt. It is an holistic construct which, to a greater or lesser extent, is derived from
attitudes towards the destination's perceived tourism attributes. Lancaster (1966) suggests that consumers do not choose goods themselves, but rather the attributes are possessed by the goods and consumers use perceptions of attributes as input factors to assess utility. Potential travelers generally have limited knowledge about the attributes of a destination which they have not previously visited. For this reason, the image and attitude dimensions of a place as a travel destination are likely to be critical elements in the destination choice process, irrespective of whether or not they are true representations of what that place has to offer.

Most studies of pleasure travel destination choice have been concerned with exploring the relationship between attitude towards a place or its image, and preference for the place as a travel destination (Goodrich 1978; Matejka 1973; Mayo 1973; Scott, Schewe and Frederick 1978). However, the findings in these studies were limited to preference and did not extend to actual travel destination choice behavior. Fishbein and Ajzen (1975) emphasized that attitude measurement should be based on attitude toward the action of traveling to a specified destination, rather than on attitude toward the destination. The efficacy of this approach has been consistently verified by empirical work reported in the consumer behavior literature.

Some efforts have been made to describe actual destination choice by exploring how individuals develop a set of alternative travel destinations from which they make a final selection (Thompson and Cooper 1979; Woodside, Ronkainen and Reid 1977; Woodside and Sherrell 1977). The findings reported in these studies addressed the number of alternative destinations which were considered and the role of attitudes toward each alternative in selecting the set of alternative destinations. These studies attempted to apply the concept of evoked set to the tourism field, but their conclusions were based upon a hypothetical destination choice process rather than an actual destination choice process. This distinction is important because significant differences have been reported between the factors considered in making an actual decision and those involved in a hypothetical decision (Beaulieu and Schreyer 1985).

Attitudes have been one of the most popular variables used in the consumer behavior field to try and predict consumer choice behavior. Several multiattribute models have been developed which measure attitudes and attempt to relate attitudes to behavior (for example, Fishbein and Ajzen 1975; Rosenberg 1956). A substantial body of literature using these models has emerged, and one of its salient conclusions is that when situational constraints are specified and integrated into consumer choice models, their predictive power is enhanced (Belk 1975; Hansen 1976; Park 1978; Tybout and Hauser 1981). Multiattribute models which ignore this component are unlikely to accurately reflect consumers' choice processes. In the context of tourism, Crompton (1977) suggested that destination choice should be conceptualized as being a function of the interaction between pragmatic constraints such as time, money, and skills and destination images. More recently, this approach was endorsed by Woodside and Lyonski (1989) in their general model of traveler choice.

The objective of this study was to conceptualize and empirically test
the role of attitudes in the pleasure travel destination choice process. Destination choice has been conceptualized as having two phases (Crompton 1977). The first is a generic phase which addresses the fundamental issue of whether or not to have a vacation at all. Once the decision in favor of a vacation is made, the second phase is concerned with where to go. This study was limited to exploring the second phase; and respondents were screened to include only those who reported an intention to go on a pleasure vacation (Fishbein and Ajzen 1975).

CONCEPTUAL BASIS OF THE STUDY

A framework of pleasure travel destination choice was developed to provide a context for the study (Figure 1). This model identifies and integrates five sets of processes which are presented as flows (a) the formation of subjective beliefs about destination attributes in the awareness set, through passive information catching or incidental learning; (b) a decision to undertake a pleasure trip (initiation of a destination choice process) which includes consideration of situational constraints; (c) evolution of an evoked set from the awareness set of destinations; (d) the formation of subjective beliefs about the destination attributes of each alternative in the evoked set of destinations, through active solicitation of information; and (e) selection of a specific travel destination (or destinations). The framework also identifies three constructs which evolve from these five processes. They are awareness set, evoked set, and travel destination selection.

Description of Concepts Used in the Framework

The concepts used in the framework may be described as external inputs; internal inputs; or cognitive constructs (Figure 1). External inputs can be viewed as the sum of social interactions and marketing communications to which a potential pleasure traveler is exposed. They can be classified into significative stimuli, symbolic stimuli, and social stimuli (Howard and Sheth 1969:63). Significative stimuli are those which emanate from actually visiting the destination (i.e., from being physically exposed to the travel destination). Symbolic stimuli are the words, sentences, and pictures disseminated as promotional material through the media by the travel industry. Social stimuli emanate from other people in face-to-face interactions. They include other people communicating their direct or indirect travel experiences.

Gitelson and Crompton (1983) reported that 74% of all respondents indicated that they had received travel information from friends and relatives (social stimuli), whereas 20% of the respondents had received travel information from print media (symbolic stimuli) such as newspapers, general magazines, and travel magazines. Nolan (1976) and Walter and Long (1977) reported that the most influential source of information for destination choice was interpersonal relationships with family, friends, and relatives. Similarly, Crompton (1981) reported that social groups exerted a normative influence on choice of destinations.

Internal inputs derive from the sociopsychological set of a potential traveler which includes personal characteristics (sociodemographics,
Figure 1. A Model of the Pleasure Travel Destination Choice Process
lifestyle, personality, and situational factors), motives, values, and attitudes (Assael 1984). Beliefs about destination attributes are formed by being exposed to the external stimuli display, but the nature of those beliefs will vary according to the potential traveler's sociopsychological set.

Cognitive constructs represent an integration of the internal and external inputs, into the awareness set of destinations and the evoked set of destinations.

The awareness set includes all travel locations which people might consider as potential destinations before any decision process about their trip has been initiated. That is, it refers to "all the preferred destinations of your dreams" (Crompton 1977). These preferred destinations are likely to reflect locations which are consistent with an individual's ideal destination. In deriving the awareness set, people are likely to include everywhere they desire to travel, without being inhibited by such situational constraints as money or time.

The evoked set includes all the travel destinations which potential travelers might consider to be reasonable alternatives in selecting a specific destination(s) (Howard and Sheth 1969). In this stage, people are likely to consider their situational constraints as well as their preferences for alternative destinations. It is assumed that an evoked set is developed simultaneously or after a fundamental decision is made on whether or not to take a pleasure trip. Thus, evolution of an evoked set is an intermediate stage between the awareness set and the final choice.

Interaction of Attitudes and Situational Constraints

Attitudes have been shown to be a useful predictor of overall preferences, but their success in predicting behavior has been less definitive (Assael 1984). Day and Deutscher (1982) reported that attitudes towards major appliance brands were only weakly related to subsequent brand choice, because such attitudes were susceptible to change during the period of active information search prior to the purchase decision. Belk (1975), Rokeach and Kliejunas (1972), and Sheth (1974) have suggested that explicit recognition of situational variables can enhance the ability to explain and understand consumer behavior.

In this study, situational variables were integrated as part of the attitude toward a destination. Attitudes towards destination attributes were evaluated as either perceived facilitators or perceived inhibitors in terms of accommodating situational constraints as well as satisfying specific motives for pleasure travel. In the context of the destination choice framework (Figure 1), attitudes toward alternatives are formulated at both the evoked set and destination selection stages. At both stages, attitudes were operationalized as the difference between the magnitude of perceived facilitators (PF_i) and the magnitude of perceived inhibitors (PI_i) (Peter and Tarpey 1975).

$$\text{Attitude} = PF_i - PI_i.$$

Perceived facilitators (PF_i) were operationalized as follows:
where:

- \(PF_k \) represents the magnitude of perceived facilitators in selecting alternative \(k \),
- \(B_{ki} \) is the subjective probability that alternative \(k \) will be related to perception \(i \) of destination attributes and assessed as a facilitator,
- \(FE_{ki} \) is the relative strength of the perception \(i \) as a facilitator,
- \(n \) is the number of perceptions of alternative \(k \)'s attributes, assessed as facilitators.

Perceived inhibitors \((PI_k) \) were operationalized as follows:

\[
\pi_i = \sum_{j=1}^{m} B_{ij}IE_{kj}
\]

where:

- \(PI_k \) represents the magnitude of perceived inhibitors in selecting alternative \(k \),
- \(B_{ij} \) is the subjective probability that alternative \(k \) will be related to perception \(j \) of destination attributes and assessed as an inhibitor,
- \(IE_{kj} \) is the relative strength of the perception \(j \) as an inhibitor,
- \(m \) is the number of perceptions of alternative \(k \)'s attributes, assessed as inhibitors.

It should be noted that perceptions of alternative destinations' physical attributes in the awareness set, which are formed through passive information catching, are susceptible to change during the period of active solicitation of information stimulated by an intention to select a travel destination (Bettman 1979; Park and Lutz 1982). Therefore, perceived inhibitors and perceived facilitators measured at the evoked set stage after active solution of information were symbolized as \(PF'_{k} \) and \(PI'_{k} \) to differentiate them from \(PF_{k} \) and \(PI_{k} \).

Travel Destination Choice

Travel destination choice is conceptualized as a two-stage process. The first stage is the evolution of an evoked set of destinations from an awareness set. The second stage is to select a destination from the evoked set. At the first stage, all alternative destinations in the awareness set are evaluated in terms of magnitude of \(PF_k - PI_k \). Alternative destinations judged to be unsatisfactory in terms of this magnitude are eliminated from further consideration. At the second stage, a travel destination (or destinations) is selected from the alternative destinations in the evoked set based on the magnitude of \(PF'_{k} - PI'_{k} \) asso-
associated with actually traveling to each alternative. The alternative which is likely to provide the highest score is selected as the travel destination (Corstjens and Gautschi 1983; Edward 1954; Lawler 1973).

Two alternative hypotheses were tested. First, the mean score of $PF_i - PI_i$ among alternative destinations which are selected in an evoked set is greater than that among the alternatives which are not selected in the evoked set. Second, the mean score of $PF^*_i - PI^*_i$ of the alternative(s) which is selected as a travel destination(s) from the evoked set is greater than that of the alternatives which are not selected as travel destinations from the evoked set.

METHODS

The pleasure travel destination choice process has been conceptualized in the literature from four different perspectives. First, destination choice has been viewed as a cognitive process involving perception of stimuli, associating stimuli with needs, evaluating alternatives, and assessing whether expectations have been met (Assael 1984). Second, it has been perceived as a reasoned action determined by attitude about the action and by the influence of social groups (Ajzen and Fishbein 1980). Third, it has been viewed as an economic activity, where an alternative is selected that maximizes utility (Harris, Driver and Bergersen 1985). Fourth, it has been perceived as leisure participation which is embedded in perceived competence and results in seeking destination attributes that are believed to offer optimal arousal (Iso-Aloha 1980).

From these four conceptualizations, three attribute dimensions were derived: need satisfaction, social agreement, and “travelability.” The perspectives using the concepts of maximum utility and perceived competence, together with situational constraints, were merged into a more generic dimension that was named “travelability”; efforts to operationalize these three facets suggested they were interrelated. The need satisfaction dimension incorporates a set of motivations for travel such as novelty, challenge, relaxation, learning, and curiosity (Crompton 1979). The social agreement dimension reflects potential tourists’ inclinations to act in accordance with their social groups’ opinions. The “travelability” dimension describes an individual’s propensity to travel to a place in terms of such variables as money, time, skill, and health.

To operationalize the three dimensions, a pool of items was generated by an interacting panel of five individuals whom the authors believed to be knowledgeable of this literature. The researchers selected 40 items from this pool based on face validity. Their content validity was checked by a different team of five knowledgeable individuals (Kerlinger 1986). These judges were asked to ascertain with which of the three dimensions each item was associated. They were also to consider clarity of the items, readability of the items, and likelihood of the items being objectionable to respondents.

Internal reliability of the scale items was pretested by using data collected from 32 undergraduate students. Cronbach alpha coefficients (Cronbach 1951) were computed separately for each dimension and items were deleted to improve the alpha values. The content validity
and internal reliability checks reduced the number of items from 40 to 20. The final Cronbach alphas for each of the three dimensions, need satisfaction, social agreement, and travelability were .80, .65, and .73, respectively.

Two components of perceived inhibitors and perceived facilitators were operationalized: as subjective probability that a place is associated with a perception of destination attributes; and as the relative strength of the perception as either an inhibitor or a facilitator in evaluating the place as a possible destination. Each of these two dimensions was measured by separate instruments. First, Likert-type scale items using 5-point "strongly agree to strongly disagree" responses were developed to measure the subjective probability of each item's association with each place in potential travelers' choice sets. The second instrument used 11-point Likert-type scale items to measure potential travelers' evaluations of each item in terms of its relative strength as either a perceived facilitator or perceived inhibitor. That is, respondents were asked to check each item on a 3-point scale as being a "perceived inhibitor," "neither perceived inhibitor nor perceived facilitator," or "perceived facilitator," and then to evaluate its relative strength on a 5-point "very weak to very strong" continuum. This process yielded an 11-point Likert-type scale from −5 for very strong inhibitor to +5 for very strong facilitator, with "neither perceived inhibitor nor perceived facilitator" representing zero. In this way, inhibitors and facilitators were designated by the respondents.

Three of the 20 items were deleted because their high coefficients of variation suggested low content validity. The remaining 17 items used to measure the three attitude dimensions are shown in Table 1. This table also reports respondents' mean scores on the 11-point scale, indicating the extent to which each item was perceived by the respondents to be an inhibitor or a facilitator.

Table 1. Mean Scores of the Scale Items on the Facilitator-Inhibitor Instrument
(\(n = 312 \))

<table>
<thead>
<tr>
<th>Scale Items</th>
<th>Scale with which Item is Associated</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. A trip to ___ will be a lot of fun.</td>
<td>NS</td>
<td>4.21</td>
</tr>
<tr>
<td>2. It will cost more money to travel to ___ than I can afford.</td>
<td>T</td>
<td>2.15</td>
</tr>
<tr>
<td>3. Others have recommended that I select ___ as a place to go.</td>
<td>SA</td>
<td>2.05</td>
</tr>
<tr>
<td>4. Climate is a major factor in my decision to visit ___.</td>
<td>NS</td>
<td>3.35</td>
</tr>
<tr>
<td>5. I can do a wide variety of things in ___.</td>
<td>NS</td>
<td>3.64</td>
</tr>
<tr>
<td>6. A trip to ___ is likely to enhance my feeling of well-being.</td>
<td>NS</td>
<td>3.32</td>
</tr>
<tr>
<td>7. I can participate in outdoor recreation activities which I particularly enjoy in ___.</td>
<td>NS</td>
<td>3.26</td>
</tr>
<tr>
<td>8. I will travel to ___ because a friend or family member wants to go there.</td>
<td>SA</td>
<td>1.89</td>
</tr>
<tr>
<td>9. Others in the travel group with whom I usually travel agree with my selection of ___ as a destination.</td>
<td>SA</td>
<td>1.72</td>
</tr>
<tr>
<td>10. A trip to ___ is likely to improve togetherness with my family and friends.</td>
<td>SA</td>
<td>2.95</td>
</tr>
<tr>
<td>11. I consider a trip to ___ to be challenging.</td>
<td>NS</td>
<td>2.88</td>
</tr>
<tr>
<td>12. Potential health problems are a concern if I go on a trip to ___.</td>
<td>T</td>
<td>-1.78</td>
</tr>
<tr>
<td>13. I am likely to meet many people with different interests and life styles in ___.</td>
<td>NS</td>
<td>2.83</td>
</tr>
<tr>
<td>14. ___ is likely to be a good place for me to relax.</td>
<td>NS</td>
<td>3.75</td>
</tr>
<tr>
<td>15. The time spent to get to ___ is longer than other places I considered going to.</td>
<td>T</td>
<td>-1.17</td>
</tr>
<tr>
<td>16. It is not absolutely safe for me to travel to ___.</td>
<td>T</td>
<td>-1.01</td>
</tr>
<tr>
<td>17. The attractive natural environment is one of the major reasons for selecting ___ as a destination.</td>
<td>NS</td>
<td>4.13</td>
</tr>
</tbody>
</table>

Notes: NS = Need Satisfaction; SA = Social Agreement; and T = Travelability.
Data Collection

The longitudinal aspect of this study, combined with the pragmatic constraints of limited time and financial resources, led to the decision to use a judgement or purposive sample to serve as a panel. The total sample ($N = 359$) consisted of undergraduate college students from a variety of majors ($n = 152$), recreation and park professionals participating in two different technical workshops ($n = 155$), and employees from two city park and recreation departments ($n = 52$).

Data collection was implemented in two stages. First, data concerning the awareness set of summer/fall pleasure travel destinations were collected in February from all 359 respondents using a self-administered questionnaire. Subjects were asked which out-of-state or foreign places they were considering as possible destinations for pleasure trips during the summer or fall of 1987. Respondents were requested to evaluate each of these possible destinations using the attitude scale items. Twenty-five respondents out of the 359 provided responses were not complete and had to be discarded from the analysis.

The second stage of data collection took place in May and was directed only at those respondents who had indicated an intention to take a pleasure vacation in the first survey. The second survey was concerned with identifying respondents' evoked sets and the destinations they had selected for their summer/fall pleasure trips. Mail surveys were sent to members of the nonstudent groups ($n = 104$) who indicated in the first survey either that they were likely to take pleasure trips in the summer or fall, or that they were "neither unlikely nor likely" to take pleasure trips in the summer or fall. Response rate of the nonstudent groups was 72.1%. Out of the 75 nonstudent responses returned, 60 were usable for data analysis. Fifteen responses were discarded because respondents indicated their intentions had changed and they were no longer intending to take a vacation trip.

Because of low class attendance at the end of the semester when the second survey was administered, the size of the total available student sample decreased from the 152 originally included to 110. Thus, only 63 students were contacted out of the 93 students who qualified for inclusion in the second survey. Forty of the 63 qualified students' responses were usable. The remaining 23 indicated they no longer intended to go on a vacation. Thus, a total of 100 responses, 60 from nonstudents, and 40 from students were used to test the hypotheses.

In the second survey, respondents were asked to list the place(s) they had selected as their pleasure travel destination(s), and to list all other places which were close to being selected before they made their final decision. If they had not yet decided to where their trip was to be, they were asked to list all the places they considered to be likely destinations for their trip and to rank them in the order in which they were most likely to be selected. Respondents were then asked to respond to the scale items measuring their attitudes towards all the destinations which they listed, both close selections and likely final destination(s).

The two stage data collection process resulted in three different types of responses to identifying awareness set and evoked set, and for measuring attitudes toward potential vacation destinations in those sets.
Figure 2(A) describes the first set of responses which had the highest frequency ($n_1 = 50$). In the first survey, potential travelers' awareness sets (destinations A, B, C, D, E, and F) were identified and their attitudes toward vacation places in the awareness set were measured. In the second survey, these potential travelers responded that they had already finalized their summer vacation destination(s) (B). They were also asked to list all other places (C and D) which were close to being selected before they made their final selection(s). Thus, n_1, potential travelers' evoked sets of summer vacation destinations, consisted of destinations B, C, and D and attitudes towards each of these were measured.

In interpreting this first set of responses, it was recognized that dissonance theory suggests that attitudes might change to confirm previous behavior to reduce post-decision conflict (Ginter 1974; Knox and Inkster 1968). The attitudes towards vacation places in the evoked set, which in this case were measured after a destination had been selected, might be different from the ones on which the destination selection was based. This is because potential travelers might tend to reinforce their decisions by enhancing either their positive evaluation of the chosen alternative or their relatively negative evaluations of the alternative destinations which were discarded in the evoked set.

By definition, attitudes toward vacation places are composed of both a subjective probability that a destination is perceived to possess specified attributes, and an evaluation of the importance of those perceived attributes. In order to test whether or not potential travelers' attitudes changed after their destination selection decision, each respondent's mean scores on the 11-point evaluation scales before a destination was selected (first survey) were compared with his or her evaluation scores after a destination was selected (second survey).

It was found that the evaluations made after the destination selection decision were significantly more positive than those made before the destination selection decision (Table 2). For the second set of n_2 responses (discussed later) of potential travelers who had not yet selected their destination(s), the mean scores on the 11-point evaluation scales in the first survey were also compared with the mean scores of the evaluation scales in the second survey. In the n_2 sample, there was no significant difference in the two sets of evaluation scores (Table 2).

These results suggested two alternative interpretations for the n_1 sample. First, the evaluation scores measured by the second survey perhaps should be replaced by the scores measured by the first survey in identifying the awareness set. This would remove the rationalization effect which the data suggest may have taken place to alleviate post-decision dissonance. An alternative interpretation is that changes in subjective perceptions of alternative destination attributes occurring between the first and second surveys might have been changed by active information search between the first survey and the second survey. Given this interpretation, destination attribute perceptions measured by the second survey should not be replaced by those measured by the first survey.

Like the first set of responses, respondents in the second set ($n_2 = 26$) identified an awareness set, and attitudes toward each potential
Figure 2: Summary of the Data Collection Procedures

- The first set of responses, $n_1 = 50$
- The second set of responses, $n_2 = 25$
- The third set of responses, $n_3 = 24$

Case (A): The first survey undertaken
Case (B): The second survey undertaken
Case (C): The third set of responses

Awareness set
Evoked set
Destination
Table 2. Results of Related Sample t test for Evaluation Changes

<table>
<thead>
<tr>
<th>Types of Response</th>
<th>n</th>
<th>Mean</th>
<th>t valuea</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>The First Set (n_1)</td>
<td>50</td>
<td>-1.19</td>
<td>-2.72</td>
<td>.009</td>
</tr>
<tr>
<td>The Second Set (n_2)</td>
<td>26</td>
<td>-1.29</td>
<td>-1.70</td>
<td>.100</td>
</tr>
</tbody>
</table>

$t = d / S_{d}$ where $d = x_1 - x_2$.

a Significant for two-tailed test at the .05 level.

destination in the awareness set were measured in the first survey (Figure 2(B)). However, in the second survey, potential travelers in the second set responded that they had not yet decided upon their pleasure trip destination, but they were still confident of making a pleasure trip in the summer/fall. They were asked to list the names of all the out-of-state or foreign places which they were considering as possible destinations for their pleasure trip and to rank them in the order in which they were most likely to be selected as the final destination (evoked set: destinations B, C, and D). It was assumed that their first ranked place would be their final destination selection.

The third set of responses ($n_3 = 24$) differs from the first set in that potential travelers reported in their second survey that no alternative places were considered for selection before they made their final decision (Figure 2(C)). Consistent with the choice framework guiding the study, it was interpreted that this did not mean they had no evoked sets, but rather that the awareness sets which were identified in the first survey might be their evoked sets. In order to at least partially test this proposition, the mean size of evoked sets in the first set of responses was compared with the mean size of awareness sets in the third set of responses. There was no significant difference between them (Table 3).

In addition, 96% of the potential travelers who belonged to the third set of responses had already responded in the first survey that they were either "very likely" or "likely" to travel this summer/fall. Based on these data, in the third set of responses (n_3) it was assumed that the first survey had measured evoked set rather than awareness set, and that the awareness set of these respondents was formulated sometime before the first survey commenced.

RESULTS

To test the hypotheses of this paper, a total of 100 responses ($n_1 + n_2 + n_3$) were used. In each of the hypotheses, the unit of analysis was the individual. Related sample t tests were used for testing the hypotheses (Roscoe 1975). Five procedures were used in undertaking

Table 3. Results of Independent Sample t test Comparing Size of Evoked Set

<table>
<thead>
<tr>
<th>Types of Response</th>
<th>n</th>
<th>Mean</th>
<th>t valuea</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>The First Set (n_1)</td>
<td>44</td>
<td>3.34</td>
<td>-1.46</td>
<td>.16 a</td>
</tr>
<tr>
<td>The Second Set (n_2)</td>
<td>21</td>
<td>3.80</td>
<td>DF=03</td>
<td></td>
</tr>
</tbody>
</table>

a Not significant for two-tailed test at the .05 level.
related sample t tests to test the alternative hypotheses. First, each respondent's mean score of the difference between perceived facilitators and perceived inhibitors was calculated for the group of selected alternative destinations (x_1) and the group of nonselected alternatives (x_2) at each stage of the pleasure travel destination choice model. Second, the difference (d) between the two groups' mean scores was calculated for each subject, and then the mean score (\bar{d}) of those differences was calculated:

$$d = x_1 - x_2.$$

Third, the standard error of the differences between the two groups' mean scores was estimated from:

$$S_{\bar{d}} = (\sum(d - \bar{d})^2/n(n - 1))^{1/2}$$

where: n is the number of pairs. Fourth, the t value was calculated by:

$$t = \frac{\bar{d}}{S_{\bar{d}}}.$$

Finally, the calculated t was compared to the tabled value at the .05 level of significance and with degrees of freedom equal to $n - 1$. A two-tailed test was used. If the calculated statistics equalled or exceeded the tabled value, the null hypothesis was rejected, and the alternative hypothesis was accepted.

H_1: The mean score of $PF_k - PI_k$ among alternative destinations which are selected in an evoked set is greater than that among the alternatives which are not selected in the evoked set.

Table 4 shows the results of the related sample t test performed on the alternatives selected from the awareness set for the evoked set. The results indicated that the hypothesis could be accepted at the .05 level. That is, the mean score $PF_i - PI_i$ of the alternative destinations, which were selected from the awareness set for inclusion in the evoked set, was greater than those destinations that were not selected.

H_2: The mean score of $PF_k - PF_i$ of the alternative(s) which is selected as a travel destination(s) from the evoked set is greater than

| Table 4. Results of Related Sample t tests Testing for Differences Between Alternative Destinations Selected and Not Selected in the Evoked Set and as a Final Destination |
|----------------|--------|--------|------|--------|-----------------|
| Stage in Decision Process | n | Mean (d) | STD Error | t value | Probability |
| $PF_k - PI_k$ in deriving the Evoked Set from the Awareness Set | 41 | 7.55 | 2.76 | 2.74 | .006* |
| $PF_i - PI_i$ in selecting a Final Destination from the Evoked Set | 66 | 4.88 | 2.43 | 2.01 | .045* |

* Significant for two-tailed test at the .05 level.
the mean score of the alternatives which are not selected as a travel
destination(s) from the evoked set.

Table 4 also shows the results of the related sample t test performed
on the alternatives selected as final destinations from the evoked set. The
results indicated that the hypothesis could be accepted at the .05
level. That is, the mean score $PF_i - PI_i$ of the alternative(s) which
was selected as a travel destination(s) from the evoked set was greater
than the mean score of the alternatives which were not selected as a
travel destination(s).

The results of testing hypotheses 1 and 2 suggest that attitude is a
significant indicator for predicting whether or not a vacation place is
selected as a final destination from the alternatives in the awareness
set.

CONCLUSIONS

The focus of the paper was to identify the role of attitudes in an
individual's pleasure travel destination choice process. The approach
used here differs from other frameworks which have appeared in the
literature in three ways.

First, the concept of evoked set was related to an actual destination
choice process rather than a hypothetical choice situation which has
characterized most previously reported work. Most studies that have
been concerned with evoked set have focused on identifying character-
istics such as it size, rather than using the concept to explain actual
destination choice behavior. These studies often sought to identify po-
tential travelers' awareness sets and evoked sets without relating them
to actual choice decision. For example, in order to identify potential
travelers' evoked sets of destinations, Woodside and Sherrell (1977)
asked respondents to list the locations/cities that there was some likeli-
hood to visit as a vacation destination in the next 12 months.

In contrast, in this study, potential travelers' awareness sets and
evoked sets were defined and identified longitudinally, reflecting pro-
gression through their destination choice process. The first survey
which was concerned with identifying potential travelers' awareness sets
of summer/fall vacation destinations was administered in early Febru-
ary. In the second survey, which was administered in mid-May to
identify evoked sets, respondents were asked whether or not they had
selected their destinations. If they indicated that they had finalized
their destinations, they were requested to list all other places which had
been close to being selected. Otherwise, they were requested to list all
the places they were still considering as possible destinations.

Second, this study integrated situational constraints and attitude
formation by operationalizing attitude as the difference between per-
ceived inhibitors and perceived facilitators. The consumer behavior
literature suggests that situational constraints should be integrated into
decision choice frameworks (Belk 1975; Hansen 1976; Park 1978; Ty-
bout and Hauser 1981). In most multiattribute models, evaluation of
an object's attributes reflect decision makers' motivation structures
(Howard and Sheth 1969). However, they are frequently not designed
DETERMINANTS IN DESTINATION CHOICE

to reflect decision makers' anticipations toward inhibitors in terms of achieving their goals and accommodating situational constraints.

Moreover, this study considered situational constraints together with attitudes toward a destination at each stage of the pleasure travel destination choice process by operationalizing them as perceived inhibitors and perceived facilitators. In general, attitude models are less than definitive in predicting actual choice behavior (Assael 1984). Operationalization of "behavioral intention" as a mediating variable frequently has been used in efforts to relate attitude to choice behavior and enhance the predictability of attitude models. In this study, attitudes toward alternative destinations were measured at the stage of destination selection from the evoked set, as well as at the stage of evolution of an evoked set from the awareness set of destinations. This approach eliminated the necessity of introducing the "behavioral intention" variable.

Third, most multiattribute attitude models, especially compensatory models which assume that a destination's weakness on one attribute can be compensated for by its strength on another, also assume that a decisionmaker has an extensive information processing capacity (Nakanishi and Bettman 1974). However, it seems unrealistic to assume that decision makers will be able to assign weights, derive values, and compute overall utility indices in situations that involve many alternatives and attributes (Park 1978). Potential travelers may interpret a complex array of perceptions of destination attributes by simplifying them into facilitators and inhibitors in formulating their destination choice decision.

REFERENCES

Ajzen, I., and M. Fishbein

Assael, H.

Beaulieu, J. T., and R. Schreyer

Belk, R. W.

Bettman, J. R.

Corstjens, M. L., and D. A. Gautschi

Crompton, J. L.

Cronbach, L. J.
Day, G. S., and T. Deutscher

Edward, W.

Fishbein, M., and I. Ajzen

Ginter, J. L.

Gitelson, R. L., and J. L. Crompton

Goodrich, J. N.

Hansen, F.

Harris, C. C., B. L. Driver, and E. P. Bergerson

Howard, J. A., and J. N. Sheth

Iso-Ahola, S. E.

Kerlinger, F. N.

Knox, R. E., and J. A. Inkster

Lancaster, K. J.

Lawler, E. E.

Matejka, J. K.

Mayo, E. J.

Mercer, D.

Nakanishi, M., and J. R. Bettman

Nolan, S. D.

Park, C. W.

Park, C. W., and R. J. Lutz

Peter, J. P., and L. X. Tarpey
Peterson, G. L., D. J. Stynes, D. H. Rosenthal, and J. F. Dwyer

Rokeach, M., and P. Kliejunas

Rosch, E.

Rosenberg, M. J.

Roscoe, J. T.

Scott, D., C. D. Schewe, and D. G. Frederick

Sheth, J. N.

Steel, R. G., and J. H. Torrie

Thompson, J. R., and P. D. Cooper

Tybout, A. M., and J. R. Hauser

Walter, C. K., and Hsin-Min, Tong

Woodside, A. G., and I. A. Ronkainen

Woodside, A. G., I. A. Ronkainen, and D. M. Reid

Woodside, A. G., and D. Sherrell

Woodside, A. G., and Lysonski, S.