Goals of IPM in Pecans

- Exceed or maintain yields equivalent to conventional
- Identify best method of pest control
- Conserve natural enemies
- Use pesticides only when necessary and at the proper time
- Minimize insecticide resistance
- Increase net profits
An Ideal IPM Program

- Early detection of potential pests
- Assessment of pest density relative to the pest’s ability to attack and cause damage
- Detect changes in density prior to next monitoring period
- Consider all pest management strategies
• Evaluate control tactics
• Calculate direct and indirect costs
• Use plan to implement IPM decisions
“Pest management is a highly individualized and specific activity”
Key to Insect IPM in Pecans

- Manage around the key pests
- Treat other pests as the need arises
- Most insect management programs will require three insecticide applications
 - Pecan nut casebearer shortly after pollination
 - Hickory shuckworm at half shell hardening and again 10 to 14 days later
Seasonal Occurrence of Pecan Pests

<table>
<thead>
<tr>
<th></th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>May</th>
<th>June</th>
<th>July</th>
<th>Aug</th>
<th>Sept</th>
<th>Oct</th>
<th>Nov</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plant Stage</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
</tr>
<tr>
<td>BB</td>
<td></td>
</tr>
<tr>
<td>Po</td>
<td></td>
</tr>
<tr>
<td>WS</td>
<td></td>
</tr>
<tr>
<td>GS</td>
<td></td>
</tr>
<tr>
<td>KD</td>
<td></td>
</tr>
<tr>
<td>SS</td>
<td></td>
</tr>
<tr>
<td>LD</td>
<td></td>
</tr>
</tbody>
</table>

Phylloxera
Pecan nut casebearer
Pecan weevil
Hickory shuckworm
Honeydew aphids
Black pecan aphid
Characteristics of New Insecticides

- Usually specific target site
- Limited pest range
- Safe to people
- Limited persistence
- Safer than pyrethroids to natural enemies
- Low use rates
Neonicotinoids

• Mode of Action
 – Differs from nicotinoids
 – Potent interaction with insect nicotinic receptors
 – Hyper-excitation of nervous system

• Three different groups
• Chloronicotinyl
 – Imidacloprid - Bayer
 • Provado®
 – Thiacloprid - Bayer
 – Acetamiprid – Aventis
 • Assail ®

• Nitromethylene
• Chlorothiazole

 - Thiamethoxam - Syngenta
 • Cruiser® - Seed treatment
 • Platinum® - Soil
 • Actara® - Foliar
Activity of Neonicotinoids

• Primarily sucking insects
 – Homoptera - Aphids, phylloxera
 • No grazing
• Excellent oral activity
 – Limited contact
• Xylem mobile - Root uptake, plant systemic
Macrocyclic Lactones

• Mode of action
 – Binds glutamate channel @ skeletal muscle
 – Binds GABA channel in central nervous system
 – Feeding cessation and rapid paralysis
Activity of Macrocyclic Lactones

• Spinosad - Dow AgroSciences
 – SpinTor®

• Mode of action
 – Binds @ post-synaptic nicotinic acetylcholine receptor
 – Hyper excitation

• Good lepidopteran material
 – Grazing permitted
Diacylhydrazine

• Mode of action
 – Non-steroidal ecdysone agonist
 – Induces premature molt in caterpillars

• Different chemistries
 – Tebufenozide – Dow AgroSciences
 • Confirm® - No grazing
 – Methoxyfenvozide – Dow AgroSciences
 • Intrepid®
Pecan nut casebearer

- Overwinters as a small larva in a cocoon called a “hibernaculum”
- Larva becomes active at budbreak
 - Tunnels into rapidly growing shoot
 - Pupates and emerges as adult
• Moth lays egg on nutlet
• Egg hatches in 4 days, feeds on tender buds 1-2 days
 – 3 to 4 generations per year
Management of Pecan nut casebearer

• Day degree method
• Accumulate day degrees
 – Start at 50% budbreak
 – 38 ° F
Management of PNC (slide 2)

- Scout at 1730 day degrees
- Sample again at 1810 day degrees
- Significant nut entry at 1831 day degrees
• Pecan nut casebearer pheromone
• Place one trap per tree
 – Traps should be 50 feet apart
 – 6-8 feet high
 – Unwrap septa saturated with pheromone and place inside trap
 – Replace pheromone every 4 weeks
• Use 3 to 5 traps per 50 acres
Management of PNC (slide 4)

- Traps must be placed in the orchard early
 - Zeroes are significant
 - 4 weeks prior to spraying
- Order extra traps and pheromone
 - Can be lost in a storm
 - Pheromone will last two seasons when stored in the freezer
• Begin scouting for eggs 7-10 days after first moth capture

• No substitutes for actual scouting
 – Reassess applications after 5 days
Pecan weevil

• Uncultivated situation
 – Nut production occurs every 4 to 8 years
 – Weevil exists in low numbers
 – In heavy production year, a crop is produced
 • Too many pecans for the weevil
 – Weevil starved in succeeding years
• Cultivated situation
 – Nut production occurs every 1 to 2 years
 – Weevil initially exists in low numbers
 • Poor fliers
 – Nut production is constant, so weevils continue to increase

• Weevil problems are due to good production management but poor pecan weevil management
• Female lays eggs from gel stage to shuck split
 – Feeding prior to this time causes nut to drop
 – A male damages 6 nuts in his lifetime
 – Female requires a pre-oviposition period of 5 to 6 days. A female will damage 23 nuts in her lifetime
• Larva requires 42 days to mature inside nut
 – Larva chews out of nut and drops to the ground
 – Larva can be underground in 2 to 4 minutes
 – Larva is cream colored with a reddish head
 – Remains in larval stage for 1 to 2 years
Management of Pecan weevil

• Nut feeding prior to the gel stage is insignificant to overall problem

• Goal is to prevent egg laying
 – No insecticides can kill larva in the nut
 – No insecticides can kill larva and pupa in ground
Management of pecan weevil (slide 2)

• **Treatment based on various factors**
 – Monitor kernel development
 – Monitor soil hardness
 – Monitor adult emergence
Management of pecan weevil (slide 3)

- **Use traps**
 - Indicate weevil emergence is starting
 - Indicate emergence continues so re-treatment is necessary
 - Indicates late emergence

- **Weevil emergence cones**

- **Tedder's trap**
 - Easier to use
 - Paint tree trunks white
Adult Pecan weevil Emergence

Cumulative Percent Emergence

Date

Aug 10
Aug 30
Sept 20
Sept 30
Oct 10

0 20 40 60 80 100
• Treatment regime
 – If weevils are present treat at gel stage
 • Do not assume you trapped first weevils
 • Treat immediately; Usually Aug 22-25
 – Empty traps after 4 days
 • If no emergence in next 4 days treatments can stop
 • Continue trapping until shuck split and treat if late emergence occurs
Hickory shuckworm

• Least understood of all the pests
 – Difficult to predict

• Overwinters as nearly mature larva
 – In fallen shucks

• Larvae pupate in March

• Adults emerge about a month later
Hickory shuckworm (slide 2)

- Early in season eggs deposited on leaves
 - See some feeding in phylloxera galls
- Later generations deposit eggs on nuts
• Larvae tunnel in shuck
 – Interrupts flow of water and nutrients
 – Pupates in shuck
• Damage includes “stick tights” and poor quality
Management of Hickory shuckworm

• Shuckworms present all season

• Increased population at time of shell hardening
 – Some evidence of delayed overwintered emergence
• Treat at half-shell hardening
 – Reapply 10 to 14 days later
 – Sanitation can help
• Watch earliest varieties in the orchard
Aphid Complex

• Black aphid
 – Most devastating of the aphids
 – Not an early season problem
 – Protect foliage in the late season
 • Easy to control with dimethoate
 • Three aphids per compound leaf
• Honeydew aphids
 – Actually a combination of aphids
 • Black-margined aphid
 • Yellow pecan aphid
 – Cheyenne may be only tree that needs treatment
 • 25 to 30 aphids per compound leaf
 • Cure is worse than the disease
 – Resistance and resurgence problems
Stink bug Complex

• Feed from nut set to harvest
 – Prior to shell hardening, pecans fall from tree
 – Black spots are bitter
Stink bug Management

- Control weeds in and around orchard
- Plant trap crops
 - Single row of peas
 - Black-eye, purple hull, Crowder
 - Last week in July
 - Need irrigation
Fire ants in Pecans

- Considered a pest in pecans
 - Indiscriminate predator
 - Protect aphids
 - A pest at harvest time
Control Options

• Eradication
• Quarantines
• Natural and biological
• Physical and mechanical
• Organic
• Chemical
Eradication

- Will not work
- Ants infest extensive area
 - Massive resources
- Multiple colonies
- Pesticide limitations
- Chemicals never end
- Will not work
Quarantines

- Brown County on western edge
 - Tom Green County

- Limit movement
 - Nursery stock, turfgrass, hay and other items

- Store hay on treated pads
 - Limit soil contact
Natural and Biological

• Weather
 – Drought and winters

• Newly mated queens attacked
 – Birds
 – Lizards

• Predators
 – *Steinernema* spp.
Natural and biological (slide 2)

• Pathogens
 – *Thelohania*
 – *Beauveria bassiana*

• Parasites
 – *Solenopsis daguerri*
 – *Pseudacton spp.*
 – *Caenocholax fenyesi*

• Other ants
Ant Competition

Big-headed ant

Red harvester ant

Carpenter ant

Little black ant
Organic

• Citrex™
 – d-limonene
• Insecto® Formula 7
 – Pine oil
• Organics Solutions™
 – Pyrethrum
Using Baits

• Broadcast a bait
 – Preferably twice/year
 – Spring and fall
 – Baits do not prevent re-infestation
Tree Treatments

• Treat trunk

• Better method to preserve competitive ant species

• Products
 – Lorsban®
 – No grazing
Advantages of Baits

• No need to find mounds
• Long-lasting control
 – 6-12 months
• Least expensive method
• Not labor intensive
• Low human toxicity
• Few environmental hazards
Disadvantages of Baits

- Slow to work
 - Weeks to months
- 80-95% control
- Expensive
 - Low populations (<10/acre)
- Works only on active ants
- Requires spreader
- Harm non-target ants
<table>
<thead>
<tr>
<th>Active Ingredient</th>
<th>Brand Name</th>
<th>Use Sites</th>
<th>Speed of Action</th>
<th>Duration of Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydra-methylnon</td>
<td>Amdro</td>
<td>Non-bearing Graze</td>
<td>2-4 wks.</td>
<td>6-12 mos.</td>
</tr>
<tr>
<td>Active Ingredient</td>
<td>Brand Name</td>
<td>Use Site</td>
<td>Speed of Action</td>
<td>Duration of Control</td>
</tr>
<tr>
<td>--------------------</td>
<td>------------</td>
<td>-------------</td>
<td>-----------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>Fenoxycarb</td>
<td>Logic</td>
<td>Non-bearing</td>
<td>2-6 mos.</td>
<td>6-18 mos.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Graze</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pyriproxyfen</td>
<td>Distance</td>
<td>Non-bearing</td>
<td>2-4 mos.</td>
<td>6-18 mos.</td>
</tr>
<tr>
<td></td>
<td>Esteem</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Graze</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Active Ingredient</td>
<td>Brand Name</td>
<td>Use Sites</td>
<td>Speed of Action</td>
<td>Duration of Control</td>
</tr>
<tr>
<td>-------------------</td>
<td>------------</td>
<td>-----------</td>
<td>-----------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>S-methoprene</td>
<td>Extinguish</td>
<td>Bearing</td>
<td>2-6 mos.</td>
<td>6-18 mos.</td>
</tr>
</tbody>
</table>